Skip to main content
Log in

Jointly Optimize Energy Harvest Time and Device Pairing for D2D Communications Underlaying Cellular Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nowadays, to realize device sustainability and prolong device working time, energy harvest (EH) has been introduced into D2D communication networks that allow each D2D equipment (DUE) harvesting the radio frequency energy from the facilities in proximity. However, in such EH-enabled D2D network, it is challenging to integrate EH with the device pairing mechanism that is critical to the performance of the network. To this problem, we propose an optimization algorithm in this paper that jointly optimizes the energy harvesting time and the pairing for each DUE in a close-form to obtain the maximum throughput of the EH-enabled D2D network. In the proposed algorithm, each DUE will go through two mutually influenced stages, i.e., EH stage and information transmit stage, in which the device pairing will take the energy status of the candidate DUEs into consideration. The numerical results demonstrate that the joint optimization algorithm has a significant increased throughput for the EH-enabled D2D network, compared with other benchmark solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility Statement

Not applicable.

Code Availability

Not applicable.

References

  1. Jameel, F., Hamid, Z., Jabeen, F., Zeadally, S., & Javed, M. A. (2018). A Survey of device-to-device communications: Research issues and challenges. IEEE Communications Surveys & Tutorials, 20(3), 2133–2168. https://doi.org/10.1109/COMST.2018.2828120

    Article  Google Scholar 

  2. Dhanvijay, S., & Karn, R. (2022). Study of device-to-device communication in the next generation of wireless communication. In Nagar, A. K., Jat, D. S., Marín-Raventós, G., Mishra, D. K. (Eds.) Intelligent sustainable systems. Lecture notes in networks and systems (Vol. 333). Springer. https://doi.org/10.1007/978-981-16-6309-3_37

  3. Feng, D., Lu, L., Yuan-Wu, Y., Li, G. Y., Feng, G., & Li, S. (2013). IEEE Transactions on Communications (pp. 3541–3551). https://doi.org/10.1109/TCOMM.2013.071013.120787

    Book  Google Scholar 

  4. Chakrabarti, S., & Das, S. (2023). Energy Harvesting Enabled Adaptive Mode Selection for Cognitive Device-to-Device Communication in a Hybrid Wireless Network: A Stochastic Geometry Perspective. Wireless Personal Communication, 129, 1693–1716. https://doi.org/10.1007/s11277-023-10202-z

  5. Yin, R., Zhong, C., Yu, G., Zhang, Z., Wong, K. K., & Chen, X. (2016). IEEE Transactions on Vehicular Technology (pp. 2182–2195). https://doi.org/10.1109/TVT.2015.2424395

    Book  Google Scholar 

  6. Wang, L., Tang, H., Wu, H., & Stüber, G. L. (2017). IEEE Transactions on Vehicular Technology (pp. 1159–1170). https://doi.org/10.1109/TVT.2016.2553124

    Book  Google Scholar 

  7. Zeng, Y., Hu, H., Xu, T., & Jia, B. (2017). User pairing stability in D2D-relay networks. IEEE Communications Letters, 21(10), 2278–2281. https://doi.org/10.1109/LCOMM.2017.2721364

    Article  Google Scholar 

  8. Song, W. (2019). Analysis of a distance-based pairing scheme for collaborative content distribution via device-to-device communications. IEEE Transactions on Vehicular Technology, 68(9), 9245–9256. https://doi.org/10.1109/TVT.2019.2930885

    Article  Google Scholar 

  9. Zhou, X., Pan, D., Song, H., & Huang,X. (2020). Socially-aware D2D pair strategy: A stable matching approach. In 2020 IEEE 39th international performance computing and communications conference (IPCCC) (pp. 1–4). https://doi.org/10.1109/IPCCC50635.2020.9391547.

  10. Liu,C., He, C., Meng, W., & Han, S. (2017). A design of D2D-pairing scheme on Voronoi diagram. In 2017 13th International wireless communications and mobile computing conference (IWCMC) (pp. 202–205). https://doi.org/10.1109/IWCMC.2017.7986286.

  11. Lu, W., Ren, X., Xu, J., Chen, S., Yang, L., & Xu, J. (2019). DUE Distribution and Pairing in D2D Communication. In 2019 28th International conference on computer communication and networks (ICCCN) (pp. 1–8). https://doi.org/10.1109/ICCCN.2019.8847040.

  12. Lv, W., Zeng, Y., Song, T., Xu, T., & Hu, H. (2018). Stable and proportional fair user pairing algorithm for D2D-relay systems. IEEE Global Communications Conference (GLOBECOM), 2018, 1–6. https://doi.org/10.1109/GLOCOM.2018.8647902

    Article  Google Scholar 

  13. Chen, D.-H., & He, Y.-C. (2023). Cellular network enabled energy-harvesting secure communications for full-duplex D2D links. IEEE Systems Journal, 17(1), 383–394. https://doi.org/10.1109/JSYST.2022.3144311

    Article  Google Scholar 

  14. Chu, M., Liu, A., Chen, J., Lau, V. K. N., & Cui, S. (2022). A Stochastic geometry analysis for energy-harvesting-based device-to-device communication. IEEE Internet of Things Journal, 9(2), 1591–1607. https://doi.org/10.1109/JIOT.2021.3091723

    Article  Google Scholar 

  15. Omidkar, A., Khalili, A., Nguyen, H. H., & Shafiei, H. (2022). Reinforcement-learning-based resource allocation for energy-harvesting-aided D2D communications in IoT networks. IEEE Internet of Things Journal, 9(17), 16521–16531. https://doi.org/10.1109/JIOT.2022.3151001

    Article  Google Scholar 

  16. Yang, H. H., Lee, J., & Quek, T. Q. S. (2016). Heterogeneous cellular network with energy harvesting-based D2D communication. IEEE Transactions on Wireless Communications, 15(2), 1406–1419. https://doi.org/10.1109/TWC.2015.2489651

    Article  Google Scholar 

  17. Wang, K., Yang, K., & Magurawalage, C. S. (2018). Joint energy minimization and resource allocation in C-RAN with mobile cloud. IEEE Transactions on Cloud Computing, 6(3), 760–770. https://doi.org/10.1109/TCC.2016.2522439

    Article  Google Scholar 

  18. Hu, J., Yang, K., Wen, G., & Hanzo, L. (2018). Integrated Data and Energy Communication Network: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 20(4), 3169–3219. https://doi.org/10.1109/COMST.2018.2860778

    Article  Google Scholar 

  19. Atat, R., Chen, H., Liu, L., Ashdown, J., Medley, M., & Matyjas, J. (2016). Fundamentals of spatial RF energy harvesting for D2D cellular networks. IEEE Global Communications Conference (GLOBECOM), 2016, 1–6. https://doi.org/10.1109/GLOCOM.2016.7841854

    Article  Google Scholar 

  20. Atat, R., Liu, L., Ashdown, J., Medley, M., Matyjas, J., & Yi, Y. (2016). Improving spectral efficiency of D2D cellular networks through RF energy harvesting. IEEE Global Communications Conference (GLOBECOM), 2016, 1–6. https://doi.org/10.1109/GLOCOM.2016.7841890

    Article  Google Scholar 

  21. Gupta, S., Zhang, R., & Hanzo, L. (2017). Energy harvesting aided device-to-device communication underlaying the cellular downlink. IEEE Access, 5, 7405–7413. https://doi.org/10.1109/ACCESS.2016.2600242

    Article  Google Scholar 

  22. Gupta, S., Zhang, R., & Hanzo, L. (2018). Energy harvesting aided device-to-device communication in the over-sailing heterogeneous two-tier downlink. IEEE Access, 6, 245–261. https://doi.org/10.1109/ACCESS.2017.2762091

    Article  Google Scholar 

  23. Saleem, U., Jangsher, S., Qureshi, H. K., & Hassan, S. A. (2018). Joint subcarrier and power allocation in the energy-harvesting-aided D2D communication. IEEE Transactions on Industrial Informatics, 14(6), 2608–2617. https://doi.org/10.1109/TII.2018.2794467

    Article  Google Scholar 

  24. Wang, K., Heng, W., Hu, J., Li, X., & Wu, J. (2018). Energy-efficient resource allocation for energy harvesting-powered D2D Communications Underlaying Cellular Networks. 2018 IEEE 88th Vehicular technology conference (VTC-fall) (pp. 1–5). https://doi.org/10.1109/VTCFall.2018.8690940.

  25. Gong, S., Shen, Y., Huang, X., Wu, S. X., & So, A. M. (2016). Robust relay beamforming in device-to-device networks with energy harvesting constraints. IEEE Global Communications Conference (GLOBECOM), 2016, 1–6. https://doi.org/10.1109/GLOCOM.2016.7842233

    Article  Google Scholar 

  26. Yu, S., Ejaz, W., Guan, L., & Anpalagan, A. (2017). Resource allocation for energy harvesting assisted D2D communications underlaying OFDMA cellular networks. 2017 IEEE 86th vehicular technology conference (VTC-fall) (pp. 1–7). https://doi.org/10.1109/VTCFall.2017.8288333.

  27. Wang, H., Ding, G., Wang, J., Wang, L., Tsiftsis, T. A., & Sharma, P. K. (2017). Resource allocation for energy harvesting-powered D2D communications underlaying cellular networks. IEEE International Conference on Communications (ICC), 2017, 1–6. https://doi.org/10.1109/ICC.2017.7997132

    Article  Google Scholar 

  28. Xu, Y., Liu, Z., Huang, C., & Yuen, C. Robust resource allocation algorithm for energy harvesting-based D2D communication underlaying UAV-assisted networks. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3078264.

  29. Chen, J., Zhao, Y., Xu, Z., & Zheng, H. (2020). Resource allocation strategy for D2D-assisted edge computing system with hybrid energy harvesting. IEEE Access, 8, 192643–192658. https://doi.org/10.1109/ACCESS.2020.3032033

    Article  Google Scholar 

  30. Kuang, Z., Liu, G., Li, G., & Deng, X. (2019). Energy efficient resource allocation algorithm in energy harvesting-based D2D heterogeneous networks. IEEE Internet of Things Journal, 6(1), 557–567. https://doi.org/10.1109/JIOT.2018.2842738

    Article  Google Scholar 

  31. Salim, M. M., Wang, D., Liu, Y., El Atty, Abd, Elsayed, H., & Abd Elaziz, M. (2019). Optimal Resource and Power Allocation With Relay Selection for RF/RE Energy Harvesting Relay-Aided D2D Communication. IEEE Access, 7, 89670–89686. https://doi.org/10.1109/ACCESS.2019.2924026

    Article  Google Scholar 

  32. Del Testa, D., Michelusi, N., & Zorzi, M. (2016). Optimal transmission policies for two-user energy harvesting device networks with limited state-of-charge knowledge. IEEE Transactions on Wireless Communications, 15(2), 1393–1405. https://doi.org/10.1109/TWC.2015.2489642

    Article  Google Scholar 

Download references

Funding

This work is partially founded by Natural Science Foun- dation of China (Grant Nos. 61620106011, U1705263 and 61871076), UESTC Yangtze Delta Region Research Institute - Quzhou (Grant No.: 2020D002) and EU H2020 Project COSAFE (GA-824019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Mei.

Ethics declarations

Conflicts of interest

There is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, K., Hu, J. et al. Jointly Optimize Energy Harvest Time and Device Pairing for D2D Communications Underlaying Cellular Network. Wireless Pers Commun 135, 1993–2010 (2024). https://doi.org/10.1007/s11277-024-11003-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11003-8

Keywords

Navigation