Skip to main content
Log in

A Systematic Review on Deep Learning Techniques for Diabetic Retinopathy Segmentation and Detection Using Ocular Imaging Modalities

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Diabetic Retinopathy (DR) is a rapidly growing consequence of diabetes mellitus globally. DR causes lesions that can cause blindness if untreated. The significant advancement in deep learning (DL) approaches have proven to be superior to traditional detection methods. This systematic review provides a comprehensive overview of development of DL based approach for DR segmentation and detection (SD) through ocular imaging that help ophthalmologists diagnose DR at early stage. Advances in ocular imaging has developed its contribution towards early detection of DR. Articles on ocular imaging for SD of DR were identified by following PRISMA guidelines using query “Deep Learning”, “Diabetic Retinopathy”, “retinal imaging” alone and in combination in PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until 2021. Approximately 1000 publications were searched and 153 relevant studies focused on the DL approaches for SD of utilizing ocular imaging were chosen for study. According to the survey, 66% of researchers employed DL approaches for Blood vessel (BV) segmentation, 36% of researchers used DL approaches for lesion detection, 15% of researchers have used DL approaches for optic disc and optic cup (OD and OC) segmentation for DR Diagnosis. This systematic review provided detailed literature of the state of the art relevant articles for SD of BV, Lesions, OD and OC for non-proliferative DR diagnosis at the early stage and discusses future directions to improve the performance of DL approaches for DR diagnosis and to overcome research challenges. Finally, this article highlights the outline of the proposed work to improve the accuracy of existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Yadav, P., & Singh, N. P. (2019). Classification of normal and abnormal retinal images by using feature-based machine learning approach. In Recent trends in communication, computing, and electronics (pp. 387–396).

  2. Fisher, D. E., Jonasson, F., Klein, R., Jonsson, P. V., Eiriksdottir, G., Launer, L. J., Gudnason, V., & Cotch, M. F. (2016). Mortality in older persons with retinopathy and concomitant health conditions: The age, gene/environment susceptibility-Reykjavik study. Ophthalmology, 123(7), 1570–1580.

    Article  Google Scholar 

  3. Qureshi, I., Ma, J., & Abbas, Q. (2019). Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry, 11(6), 749.

    Article  Google Scholar 

  4. Acharya, U. R., Mookiah, M. R., Koh, J. E., Tan, J. H., Bhandary, S. V., Rao, A. K., Fujita, H., Hagiwara, Y., Chua, C. K., & Laude, A. (2016). Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Computers in Biology and Medicine, 75, 54–62.

    Article  Google Scholar 

  5. Ting, D. S., Wu, W. C., & Toth, C. (2019). Deep learning for retinopathy of prematurity screening. British Journal of Ophthalmology, 103(5), 577–579.

    Article  Google Scholar 

  6. Barkana, B. D., Saricicek, I., & Yildirim, B. (2017). Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowledge-Based Systems, 118, 165–176.

    Article  Google Scholar 

  7. Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional neural networks for diabetic retinopathy. Procedia Computer Science, 90, 200–205.

    Article  Google Scholar 

  8. Vashist, P., Singh, S., Gupta, N., & Saxena, R. (2011). Role of early screening for diabetic retinopathy in patients with diabetes mellitus: An overview. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 36(4), 247.

    Article  Google Scholar 

  9. Kumar, G., Jain, S., & Singh, U. P. (2020). Stock market forecasting using computational intelligence: A survey. Archives of Computational Methods in Engineering, 28, 1–33.

    Google Scholar 

  10. Kour, N., Gupta, S., & Arora, S. (2020). A survey of knee osteoarthritis assessment based on gait. Archives of Computational Methods in Engineering, 28, 1–41.

    Google Scholar 

  11. Vij, R., & Arora, S. (2022). A systematic survey of advances in retinal imaging modalities for Alzheimer’s disease diagnosis. Metabolic Brain Disease, 37, 1–31.

    Article  Google Scholar 

  12. Vij, R., & Arora, S. (2022). Computer vision with deep learning techniques for neurodegenerative diseases analysis using neuroimaging: A survey. In International conference on innovative computing and communications (pp. 179–189).

  13. Vij, R., & Arora, S. (2024). A hybrid evolutionary weighted ensemble of deep transfer learning models for retinal vessel segmentation and diabetic retinopathy detection. Computers & Electrical Engineering, 115. https://doi.org/10.1016/j.compeleceng.2024.109107

  14. Vij, R., & Arora, S. (2023). A novel deep transfer learning based computerized diagnostic Systems for Multi-class imbalanced diabetic retinopathy severity classification. Multimedia Tools and Applications, 82, 34847–34884. https://doi.org/10.1007/s11042-023-14963-4.

    Article  Google Scholar 

  15. Diabetic Retinopathy Retina-Vitreous Surgeons of Central NY. Retrieved January 29, 2022, from https://www.rvscny.com/patient-eduction/conditions-we-treat/diabetic-retinopathy/

  16. Zabihollahy, F., Lochbihler, A., & Ukwatta, E. (2019). Deep learning based approach for fully automated detection and segmentation of hard exudate from retinal images. In Medical imaging 2019: Biomedical applications in molecular, structural, and functional imaging (Vol. 10953, p. 1095308).

  17. Keel, S., Wu, J., Lee, P. Y., Scheetz, J., & He, M. (2019). Visualizing deep learning models for the detection of referable diabetic retinopathy and glaucoma. JAMA Ophthalmology, 137(3), 288–292.

    Article  Google Scholar 

  18. Sarki, R., Ahmed, K., Wang, H., & Zhang, Y. (2020). Automatic detection of diabetic eye disease through deep learning using fundus images: A survey. IEEE Access, 8, 151133–151149.

    Article  Google Scholar 

  19. Alyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20, 100377.

    Article  Google Scholar 

  20. Amin, J., Sharif, M., & Yasmin, M. (2016). A review on recent developments for detection of diabetic retinopathy. Scientifica 2016.

  21. Gupta, A., & Chhikara, R. (2018). Diabetic retinopathy: Present and past. Procedia Computer Science, 132, 1432–1440.

    Article  Google Scholar 

  22. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), e1000097–e1000106.

    Article  Google Scholar 

  23. Center, I. K. (2010). What is data set. IBM Corporation. Retrieved January 29, 2022, from https://www.ibm.com/docs/en/zos-basic-skills?topic=more-what-is-data-set

  24. Abràmoff Michael, D., Garvin, M. K., & Milan, S. (2010). Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3, 169–208.

    Article  Google Scholar 

  25. Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., Dou, K., Ren, J., & Chen, J. (2017). Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE, 12(6), e0179957.

    Article  Google Scholar 

  26. Ting, D. S., Cheung, C. Y., Lim, G., Tan, G. S., Quang, N. D., Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I. Y., Lee, S. Y., & Wong, E. Y. (2017). Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA, 318(22), 2211–2223.

    Article  Google Scholar 

  27. Wang, S., Tang, H. L., Hu, Y., Sanei, S., Saleh, G. M., & Peto, T. (2016). Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Transactions on Biomedical Engineering, 64(5), 990–1002.

    Article  Google Scholar 

  28. Xiao, Z., Zhang, X., Geng, L., Zhang, F., Wu, J., Tong, J., Ogunbona, P. O., & Shan, C. (2017). Automatic non-proliferative diabetic retinopathy screening system based on color fundus image. Biomedical Engineering Online, 16(1), 1–9.

    Article  Google Scholar 

  29. Tan, J. H., Fujita, H., Sivaprasad, S., Bhandary, S. V., Rao, A. K., Chua, K. C., & Acharya, U. R. (2017). Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Information Sciences, 420, 66–76.

    Article  Google Scholar 

  30. Ponni Bala, M., & Vijayachitra, S. (2014). Early detection and classification of microaneurysms in retinal fundus images using sequential learning methods. International Journal of Biomedical Engineering and Technology, 15(2), 128–143.

    Article  Google Scholar 

  31. Abbas, Q., Fondon, I., Sarmiento, A., Jiménez, S., & Alemany, P. (2017). Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Medical & Biological Engineering & Computing, 55(11), 1959–1974.

    Article  Google Scholar 

  32. Ganesan, K., Martis, R. J., Acharya, U. R., Chua, C. K., Min, L. C., Ng, E. Y., & Laude, A. (2014). Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images. Medical & Biological Engineering & Computing, 52(8), 663–672.

    Article  Google Scholar 

  33. Xu, K., Feng, D., & Mi, H. (2017). Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules, 22(12), 2054.

    Article  Google Scholar 

  34. Quellec, G., Charrière, K., Boudi, Y., Cochener, B., & Lamard, M. (2017). Deep image mining for diabetic retinopathy screening. Medical Image Analysis, 39, 178–193.

    Article  Google Scholar 

  35. Wan, S., Liang, Y., & Zhang, Y. (2018). Deep convolutional neural networks for diabetic retinopathy detection by image classification. Computers & Electrical Engineering, 72, 274–282.

    Article  Google Scholar 

  36. Li, T., Gao, Y., Wang, K., Guo, S., Liu, H., & Kang, H. (2019). Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Information Sciences, 501, 511–522.

    Article  Google Scholar 

  37. Zhang, W., Zhong, J., Yang, S., Gao, Z., Hu, J., Chen, Y., & Yi, Z. (2019). Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge-Based Systems, 175, 12–25.

    Article  Google Scholar 

  38. Zhao, Z., Zhang, K., Hao, X., Tian, J., Chua, M. C., Chen, L., & Xu, X. (2019). Bira-net: Bilinear attention net for diabetic retinopathy grading. In 2019 IEEE international conference on image processing (ICIP) (pp. 1385–1389).

  39. Islam, S. M., Hasan, M. M., & Abdullah, S. (2018). Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images. arXiv:1812.10595

  40. Qummar, S., Khan, F. G., Shah, S., Khan, A., Shamshirband, S., Rehman, Z. U., Khan, I. A., & Jadoon, W. (2019). A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access, 7, 150530–150539.

    Article  Google Scholar 

  41. Li, X., Hu, X., Yu, L., Zhu, L., Fu, C. W., & Heng, P. A. (2019). CANet: Cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Transactions on Medical Imaging, 39(5), 1483–1493.

    Article  Google Scholar 

  42. Jiang, H., Yang, K., Gao, M., Zhang, D., Ma, H., & Qian, W. (2019). An interpretable ensemble deep learning model for diabetic retinopathy disease classification. In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 2045–2048)

  43. de La Torre, J., Valls, A., & Puig, D. (2020). A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing, 396, 465–476.

    Article  Google Scholar 

  44. Ooi, A. Z., Embong, Z., Abd Hamid, A. I., Zainon, R., Wang, S. L., Ng, T. F., Hamzah, R. A., Teoh, S. S., & Ibrahim, H. (2021). Interactive blood vessel segmentation from retinal fundus image based on canny edge detector. Sensors, 21(19), 6380.

    Article  Google Scholar 

  45. Leandro, J. J., Soaresm J. V., Cesar, R. M., & Jelinek, H. F. (2003). Blood vessels segmentation in nonmydriatic images using wavelets and statistical classifiers. In 16th Brazilian symposium on computer graphics and image processing (SIBGRAPI 2003) (pp. 262–269).

  46. Salem, N. M., & Nandi, A. K. (2007). Novel and adaptive contribution of the red channel in pre-processing of colour fundus images. Journal of the Franklin Institute, 344(3–4), 243–256.

    Article  Google Scholar 

  47. Channel (digital image). Wikipedia. Retrieved January 29, 2022, from https://en.wikipedia.org/wiki/Channel_(digital_image)

  48. Ratanapakorn, T., Daengphoonphol, A., Eua-Anant, N., & Yospaiboon, Y. (2019). Digital image processing software for diagnosing diabetic retinopathy from fundus photograph. Clinical Ophthalmology (Auckland, NZ), 13, 641.

    Article  Google Scholar 

  49. Sutton, E. (2016). Histograms and the zone system. Illustrated Photography 6–12.

  50. Jain, A. K. (1989). Fundamentals of digital image processing. Prentice-Hall, Inc.

    Google Scholar 

  51. Hossain, F., & Alsharif, M. R. (2007). Image enhancement based on logarithmic transform coefficient and adaptive histogram equalization. In 2007 International conference on convergence information technology (ICCIT 2007) (pp. 1439–1444).

  52. Sahidan, S. I., Mashor, M. Y., Wahab, A. S., Salleh, Z., & Ja’afar, H. (2008) Local and global contrast stretching for color contrast enhancement on Ziehl-Neelsen tissue section slide images. In 4th Kuala Lumpur international conference on biomedical engineering (pp. 583–586).

  53. Aziz, T., Ilesanmi, A. E., & Charoenlarpnopparut, C. (2021). Efficient and accurate hemorrhages detection in retinal fundus images using smart window features. Applied Sciences, 11(14), 6391.

    Article  Google Scholar 

  54. Al-amri, S. S., Kalyankar, N. V., & Khamitkar, S. D. (2010). Linear and non-linear contrast enhancement image. IJCSNS International Journal of Computer Science and Network Security, 10(2), 139–143.

    Google Scholar 

  55. Iwasokun, G. B., & Akinyokun, O. C. (2016). Enhancement methods: A review. Science International, 4, 2251–2277.

    Google Scholar 

  56. Oh, K., Kang, H. M., Leem, D., Lee, H., Seo, K. Y., & Yoon, S. (2021). Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images. Scientific Reports, 11(1), 1–9.

    Google Scholar 

  57. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., & Chatterjee, J. (2010). Brightness preserving dynamic fuzzy histogram equalization. IEEE Transactions on Consumer Electronics, 56(4), 2475–2480.

    Article  Google Scholar 

  58. Rahim, S. S., Jayne, C., Palade, V., & Shuttleworth, J. (2016). Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening. Neural Computing and Applications, 27(5), 1149–1164.

    Article  Google Scholar 

  59. Rahim, S. S., Palade, V., Shuttleworth, J., Jayne, C., & Omar, R. N. (2015) Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In International conference on engineering applications of neural networks (pp. 69–79).

  60. Rahim SS, Palade V, Jayne C, Holzinger A, Shuttleworth J (2015) Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing. In International Conference on Brain Informatics and Health (pp. 379–388)

  61. Yadav, S. K., Kumar, S., Kumar, B., & Gupta, R. (2016) Comparative analysis of fundus image enhancement in detection of diabetic retinopathy. In 2016 IEEE region 10 humanitarian technology conference (R10-HTC) (pp. 1–5).

  62. Adaptive histogram equalization. Wikipedia. Retrieved January 29, 2022, from, https://en.wikipedia.org/wiki/Adaptive_histogram_equalization

  63. Kim, T., & Paik, J. (2008). Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Transactions on Consumer Electronics, 54(4), 1803–1810.

    Article  Google Scholar 

  64. Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1), 1–8.

    Article  Google Scholar 

  65. Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI Signal Processing Systems for Signal, Image and video Technology, 38(1), 35–44.

    Article  Google Scholar 

  66. Dash, J., & Bhoi, N. (2018). Retinal blood vessel segmentation using Otsu thresholding with principal component analysis. In 2018 2nd international conference on inventive systems and control (ICISC) (pp. 933–937).

  67. dos Santos, J. C., Carrijo, G. A., dos Santos Cardoso, C. D., Ferreira, J. C., Sousa, P. M., & Patrocínio, A. C. (2020). Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Research on Biomedical Engineering, 36, 1–3.

    Google Scholar 

  68. Sim, K. S., Tso, C. P., & Tan, Y. Y. (2007). Recursive sub-image histogram equalization applied to Gray scale images. Pattern Recognition Letters, 28(10), 1209–1221.

    Article  Google Scholar 

  69. Chen, S. D., & Ramli, A. R. (2003). Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4), 1301–1309.

    Article  Google Scholar 

  70. Singh, K., & Kapoor, R. (2014). Image enhancement using Exposure based Sub Image Histogram Equalization. Pattern Recognition Letters, 36(15), 10–14.

    Article  Google Scholar 

  71. Costa, L. D., & Cesar Jr, R. M. (2000). Shape analysis and classification: Theory and practice. CRC Press.

    Google Scholar 

  72. Kwan, H. K. (2003). Fuzzy filters for noisy image filtering. In Proceedings of the 2003 international symposium on circuits and systems, 2003. ISCAS'03 (Vol. 4, pp. IV-IV).

  73. Gonzalez, R. C., Woods, R. E., & Masters, B. R. (2002). Digital image processing (2nd ed.). Prentice Hall.

    Google Scholar 

  74. Orlando, J. I., Prokofyeva, E., Del Fresno, M., & Blaschko, M. B. (2018). An ensemble deep learning based approach for red lesion detection in fundus images. Computer Methods and Programs in Biomedicine, 153, 115–127.

    Article  Google Scholar 

  75. Toh, K. K., & Isa, N. A. (2009). Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters, 17(3), 281–284.

    Article  Google Scholar 

  76. Kumari, V. V., & Suriyanarayanan, N. (2010). Blood vessel extraction using wiener filter and morphological operation. International Journal of Computer Science & Emerging Technologies, 1(4), 7–10.

    Google Scholar 

  77. Gao, Z. (2018). An adaptive median filtering of salt and pepper noise based on local pixel distribution. In The 2018 International Conference on Transportation & Logistics, Information & Communication, Smart City (TLICSC 2018).

  78. Ha, R., Liu, P., & Jia, K. (2017). An improved adaptive median filter algorithm and its application. In Advances in intelligent information hiding and multimedia signal processing (pp. 179–186).

  79. Tang, J., Wang, Y., Cao, W., & Yang, J. (2019). Improved adaptive median filtering for structured light image denoising. In 2019 7th international conference on information, communication and networks (ICICN) (pp. 146–149).

  80. Wiener Filtering and Image Processing. Retrieved January 29, 2022, from https://www.clear.rice.edu/elec431/projects95/lords/wiener.html

  81. Shinde, K., & Kulkarni, S. (2020). Business oriented enhancement model for diabetic retinopathy detection. In International Conference on Business Management, Innovation & Sustainability (ICBMIS).

  82. Lestari, T., & Luthfi, A. (2019). Retinal blood vessel segmentation using gaussian filter. Journal of Physics: Conference Series, 1376(1), 012023.

    Google Scholar 

  83. Shojaeipour, A., Nordin, M. J., & Hadavi, N. (2014). Using image processing methods for diagnosis diabetic retinopathy. In 2014 IEEE international symposium on robotics and manufacturing automation (ROMA) (pp. 154–159).

  84. Nelson, J. (2020). Why image preprocessing and augmentation matter. Roboflow. Retrieved January 29, 2022, from https://blog.roboflow.com/why-preprocess-augment/

  85. Prasad, D. K., Vibha, L., & Venugopal, K. R. (2015). Early detection of diabetic retinopathy from digital retinal fundus images. In 2015 IEEE recent advances in intelligent computational systems (RAICS) (pp. 240–245).

  86. Welikala, R. A., Dehmeshki, J., Hoppe, A., Tah, V., Mann, S., Williamson, T. H., & Barman, S. A. (2014). Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Computer Methods and Programs in Biomedicine, 114(3), 247–261.

    Article  Google Scholar 

  87. Akram, M. U., Khalid, S., & Khan, S. A. (2013). Identification and classification of microaneurysms for early detection of diabetic retinopathy. Pattern Recognition, 46(1), 107–116.

    Article  Google Scholar 

  88. Singh, N., & Tripathi, R. C. (2010). Automated early detection of diabetic retinopathy using image analysis techniques. International Journal of Computer Applications, 8(2), 18–23.

    Article  Google Scholar 

  89. Fadzil, M. H., Ngah, N. F., George, T. M., Izhar, L. I., Nugroho, H., & Nugroho, H. A. (2010). Analysis of foveal avascular zone in colour fundus images for grading of diabetic retinopathy severity. In 2010 annual international conference of the IEEE engineering in medicine and biology (pp. 5632–5635).

  90. Son, J., Shin, J. Y., Kim, H. D., Jung, K. H., Park, K. H., & Park, S. J. (2020). Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology, 127(1), 85–94.

    Article  Google Scholar 

  91. Yang, Y., Li, T., Li, W., Wu, H., Fan, W., & Zhang, W. (2017). Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In International conference on medical image computing and computer-assisted intervention (pp. 533–540).

  92. Kusakunniran, W., Wu, Q., Ritthipravat, P., & Zhang, J. (2018). Hard exudates segmentation based on learned initial seeds and iterative graph cut. Computer Methods and Programs in Biomedicine, 158, 173–183.

    Article  Google Scholar 

  93. Mo, J., & Zhang, L. (2017). Multi-level deep supervised networks for retinal vessel segmentation. International Journal of Computer Assisted Radiology and Surgery, 12(12), 2181–2193.

    Article  Google Scholar 

  94. Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., & Yang, G. (2015). Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 149, 708–717.

    Article  Google Scholar 

  95. Abràmoff, M. D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J. C., & Niemeijer, M. (2016). Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative Ophthalmology & Visual Science, 57(13), 5200–5206.

    Article  Google Scholar 

  96. Gegundez-Arias, M. E., Marin, D., Ponte, B., Alvarez, F., Garrido, J., Ortega, C., Vasallo, M. J., & Bravo, J. M. (2017). A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Computers in Biology and Medicine, 88, 100–109.

    Article  Google Scholar 

  97. Arunkumar, R., & Karthigaikumar, P. (2017). Multi-retinal disease classification by reduced deep learning features. Neural Computing and Applications, 28(2), 329–334.

    Article  Google Scholar 

  98. Prentasic, P., & Loncaric, S. (2014). Weighted ensemble based automatic detection of exudates in fundus photographs. In 2014 36th annual international conference of the IEEE engineering in medicine and biology society (pp. 138–141).

  99. Kaur, J., & Mittal, D. (2017). A generalized method for the detection of vascular structure in pathological retinal images. Biocybernetics and Biomedical Engineering, 37(1), 184–200.

    Article  Google Scholar 

  100. Sahu, S., Singh, A. K., Ghrera, S. P., & Elhoseny, M. (2019). An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Optics & Laser Technology, 110, 87–98.

    Article  Google Scholar 

  101. Leopold, H. A., Orchard, J., Zelek, J. S., & Lakshminarayanan, V. (2019). PixelBNN: Augmenting the PixelCNN with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. Journal of Imaging, 5(2), 26.

    Article  Google Scholar 

  102. Mahapatra, D., Bozorgtabar, B., & Garnavi, R. (2019). Image super-resolution using progressive generative adversarial networks for medical image analysis. Computerized Medical Imaging and Graphics, 71, 30–39.

    Article  Google Scholar 

  103. Wang, X., Jiang, X., & Ren, J. (2019). Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognition, 88, 331–341.

    Article  Google Scholar 

  104. Fan, Z., Lu, J., Wei, C., Huang, H., Cai, X., & Chen, X. (2018). A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Transactions on Image Processing, 28(5), 2367–2377.

    Article  MathSciNet  Google Scholar 

  105. Bandara, A. M., & Giragama, P. W. (2017). A retinal image enhancement technique for blood vessel segmentation algorithm. In 2017 IEEE international conference on industrial and information systems (ICIIS) (pp. 1–5).

  106. Adal, K. M., Van Etten, P. G., Martinez, J. P., Rouwen, K. W., Vermeer, K. A., & van Vliet, L. J. (2017). An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images. IEEE Transactions on Biomedical Engineering, 65(6), 1382–1390.

    Article  Google Scholar 

  107. Costa, P., Galdran, A., Meyer, M. I., Niemeijer, M., Abràmoff, M., Mendonça, A. M., & Campilho, A. (2017). End-to-end adversarial retinal image synthesis. IEEE Transactions on Medical Imaging, 37(3), 781–791.

    Article  Google Scholar 

  108. Maninis, K. K., Pont-Tuset, J., Arbeláez, P., & Van Gool, L. (2016). Deep retinal image understanding. In International conference on medical image computing and computer-assisted intervention (pp. 140–148).

  109. Tennakoon, R., Mahapatra, D., Roy, P., Sedai, S., & Garnavi, R. (2016). Image quality classification for DR screening using convolutional neural networks.

  110. Lahiri, A., Roy, A. G., Sheet, D., & Biswas, P. K. (2016). Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography. In 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) 2016 Aug 16 (pp. 1340–1343).

  111. Akram, M. U., Khalid, S., Tariq, A., Khan, S. A., & Azam, F. (2014). Detection and classification of retinal lesions for grading of diabetic retinopathy. Computers in Biology and Medicine, 45, 161–171.

    Article  Google Scholar 

  112. Tu, W., Hu, W., Liu, X., & He, J. (2019). DRPAN: A novel adversarial network approach for retinal vessel segmentation. In 2019 14th IEEE conference on industrial electronics and applications (ICIEA) (pp. 228–232).

  113. Hemanth, D. J., Deperlioglu, O., & Kose, U. (2020). An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Computing and Applications, 32(3), 707–721.

    Article  Google Scholar 

  114. Chudzik, P., Majumdar, S., Calivá, F., Al-Diri, B., & Hunter, A. (2018). Microaneurysm detection using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 158, 185–192.

    Article  Google Scholar 

  115. Bui, T., Maneerat, N., & Watchareeruetai, U. (2017). Detection of cotton wool for diabetic retinopathy analysis using neural network. In 2017 IEEE 10th international workshop on computational intelligence and applications (IWCIA) (pp. 203–206).

  116. Nijalingappa, P., & Sandeep, B. (2015). Machine learning approach for the identification of diabetes retinopathy and its stages. In 2015 international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 653–658).

  117. Paing, M. P., Choomchuay, S., & Yodprom, M. R. (2016). Detection of lesions and classification of diabetic retinopathy using fundus images. In 2016 9th Biomedical engineering international conference (BMEiCON) (pp. 1–5).

  118. Wang, H., Yuan, G., Zhao, X., Peng, L., Wang, Z., He, Y., Qu, C., & Peng, Z. (2020). Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening. Computer Methods and Programs in Biomedicine, 191, 105398.

    Article  Google Scholar 

  119. Khalaf, A. F., Yassine, I. A., & Fahmy, A. S. (2016). Convolutional neural networks for deep feature learning in retinal vessel segmentation. In 2016 IEEE international conference on image processing (ICIP) (pp. 385–388).

  120. Luo, Y., Cheng, H., & Yang, L. (2016). Size-invariant fully convolutional neural network for vessel segmentation of digital retinal images. In 2016 Asia-Pacific signal and information processing association annual summit and conference (APSIPA) (pp. 1–7).

  121. Fan, Z., & Mo, J. J. (2016) Automated blood vessel segmentation based on de-noising auto-encoder and neural network. In 2016 International conference on machine learning and cybernetics (ICMLC) (Vol. 2, pp. 849–856).

  122. Zhang, Y. J. (1997). Evaluation and comparison of different segmentation algorithms. Pattern Recognition Letters, 18(10), 963–974.

    Article  Google Scholar 

  123. Hua, C. H., Huynh-The, T., & Lee, S. (2019). Retinal vessel segmentation using round-wise features aggregation on bracket-shaped convolutional neural networks. In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 36–39).

  124. Fu, Q., Li, S., & Wang, X. (2020). MSCNN-AM: A multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access, 8, 163926–163936.

    Article  Google Scholar 

  125. Oliveira, A., Pereira, S., & Silva, C. A. (2018). Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications, 112, 229–242.

    Article  Google Scholar 

  126. Jiang, Z., Zhang, H., Wang, Y., & Ko, S. B. (2018). Retinal blood vessel segmentation using fully convolutional network with transfer learning. Computerized Medical Imaging and Graphics, 68, 1–5.

    Article  Google Scholar 

  127. Soomro, T. A., Afifi, A. J., Gao, J., Hellwich, O., Zheng, L., & Paul, M. (2019). Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Systems with Applications, 134, 36–52.

    Article  Google Scholar 

  128. Dasgupta, A, & Singh, S. (2017). A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017) (pp. 248–251).

  129. Li, W. et al. (2020). Fundus retinal blood vessel segmentation based on active learning. In 2020 International conference on computer information and big data applications (CIBDA) (pp. 264–268).

  130. Atli, İ, & Gedik, O. S. (2021). Sine-Net: A fully convolutional deep learning architecture for retinal blood vessel segmentation. Engineering Science and Technology, an International Journal, 24(2), 271–283.

    Article  Google Scholar 

  131. Guo, C., Szemenyei, M., Pei, Y., Yi, Y., & Zhou, W. (2019). SD-UNet: A structured dropout U-Net for retinal vessel segmentation. In 2019 IEEE 19th international conference on bioinformatics and bioengineering (BIBE) (pp. 439–444).

  132. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241).

  133. Prabha, D. S., & Kumar, J. S. (2016). Performance evaluation of image segmentation using objective methods. Indian Journal of Science and Technology, 9(8), 1–8.

    Article  Google Scholar 

  134. Prabha, D. S., & Kumar, J. S. (2013). Three dimensional object detection and classification methods: A study. International Journal of Engineering, Science and Technology, 2(2), 33–42.

    Google Scholar 

  135. Ayhan, M.S., & Berens, P. (2018). Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks.

  136. Laibacher, T., Weyde, T., & Jalali, S. (2019), M2u-net: Effective and efficient retinal vessel segmentation for real-world applications. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 0–0).

  137. Jin, Q., Meng, Z., Pham, T. D., Chen, Q., Wei, L., & Su, R. (2019). DUNet: A deformable network for retinal vessel segmentation. Knowledge-Based Systems, 178, 149–162.

    Article  Google Scholar 

  138. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable convolutional networks. In Proceedings of the IEEE international conference on computer vision (pp. 764–773).

  139. Wang, D., Hu, G., & Lyu, C. (2021). Frnet: An end-to-end feature refinement neural network for medical image segmentation. The Visual Computer, 37, 1101–1112.

    Article  Google Scholar 

  140. Vengalil, S. K., Sinha, N., Kruthiventi, S. S., Babu, R. V. (2016). Customizing CNNs for blood vessel segmentation from fundus images. In 2016 International conference on signal processing and communications (SPCOM) (pp. 1–4).

  141. Yin, P., Yuan, R., Cheng, Y., & Wu, Q. (2020). Deep guidance network for biomedical image segmentation. IEEE Access, 8, 116106–116116.

    Article  Google Scholar 

  142. Dharmawan, D. A., Li, D., Ng, B. P., & Rahardja, S. (2019). A new hybrid algorithm for retinal vessels segmentation on fundus images. IEEE Access, 7, 41885–41896.

    Article  Google Scholar 

  143. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

  144. Xiuqin, P., Zhang, Q., Zhang, H., & Li, S. (2019). A fundus retinal vessels segmentation scheme based on the improved deep learning U-Net model. IEEE Access, 7, 122634–122643.

    Article  Google Scholar 

  145. Li, D., Dharmawan, D. A., Ng, B. P., & Rahardja, S. (2019). Residual u-net for retinal vessel segmentation. In 2019 IEEE international conference on image processing (ICIP) (pp. 1425–1429).

  146. Khan, T. M., Alhussein, M., Aurangzeb, K., Arsalan, M., Naqvi, S. S., & Nawaz, S. J. (2020). Residual connection-based encoder decoder network (RCED-Net) for retinal vessel segmentation. IEEE Access, 8, 131257–131272.

    Article  Google Scholar 

  147. Guo, C., Szemenyei, M., Hu, Y., Wang, W., Zhou, W., & Yi, Y. (2021). Channel attention residual U-net for retinal vessel segmentation. In ICASSP 2021–2021 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1185–1189).

  148. Mou, L., Chen, L., Cheng, J., Gu, Z., Zhao, Y., & Liu, J. (2019). Dense dilated network with probability regularized walk for vessel detection. IEEE Transactions on Medical Imaging, 39(5), 1392–1403.

    Article  Google Scholar 

  149. Adarsh, R., Amarnageswarao, G., Pandeeswari, R., & Deivalakshmi, S. (2020). Dense residual convolutional auto encoder for retinal blood vessels segmentation. In 2020 6th international conference on advanced computing and communication systems (ICACCS) (pp. 280–284).

  150. Lopes, A. P., Ribeiro, A., & Silva, C. A. (2019). Dilated convolutions in retinal blood vessels segmentation. In 2019 IEEE 6th Portuguese meeting on bioengineering (ENBENG) (pp. 1–4).

  151. Jiang, Y., Tan, N., Peng, T., & Zhang, H. (2019). Retinal vessels segmentation based on dilated multi-scale convolutional neural network. IEEE Access, 7, 76342–76352.

    Article  Google Scholar 

  152. Soomro, T. A., Afifi, A. J., Shah, A. A., Soomro, S., Baloch, G. A., Zheng, L., Yin, M., & Gao, J. (2019). Impact of image enhancement technique on CNN model for retinal blood vessels segmentation. IEEE Access, 7, 158183–158197.

    Article  Google Scholar 

  153. Biswas, R., Vasan, A., & Roy, S. S. (2020). Dilated deep neural network for segmentation of retinal blood vessels in fundus images. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44(1), 505–518.

    Article  Google Scholar 

  154. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008).

  155. Lv, Y., Ma, H., Li, J., & Liu, S. (2020). Attention guided u-net with atrous convolution for accurate retinal vessels segmentation. IEEE Access, 8, 32826–32839.

    Article  Google Scholar 

  156. Yan, Z., Yang, X., & Cheng, K. T. (2018). Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transactions on Biomedical Engineering, 65(9), 1912–1923.

    Article  Google Scholar 

  157. Samanta, S., Ahmed, S. S., Salem, M. A., Nath, S. S., Dey, N., & Chowdhury, S. S. (2014). Haralick features based automated glaucoma classification using back propagation neural network. In Proceedings of the 3rd international conference on frontiers of intelligent computing: Theory and applications (FICTA) (pp. 351–358).

  158. Galdran, A., Costa, P., Bria, A., Araújo, T., Mendonça, A. M., & Campilho, A. (2018). A no-reference quality metric for retinal vessel tree segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 82–90).

  159. Alvarado-Carrillo, D. E., Ovalle-Magallanes, E., & Dalmau-Cedeño, O. S. (2021). D-GaussianNet: Adaptive distorted Gaussian matched filter with convolutional neural network for retinal vessel segmentation. Geometry and Vision, 1386, 378.

    Article  Google Scholar 

  160. Wu, H., Wang, W., Zhong, J., Lei, B., Wen, Z., & Qin, J. (2021). SCS-Net: A scale and context sensitive network for retinal vessel segmentation. Medical Image Analysis, 70, 102025.

    Article  Google Scholar 

  161. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems 27.

  162. Wu, C., Zou, Y., & Yang, Z. (2019). U-GAN: Generative adversarial networks with U-net for retinal vessel segmentation. In 2019 14th international conference on computer science & education (ICCSE) (pp. 642–646).

  163. Ma, J., Wei, M., Ma, Z., Shi, L., & Zhu, K. (2019). Retinal vessel segmentation based on generative adversarial network and dilated convolution. In 2019 14th international conference on computer science & education (ICCSE) (pp. 282–287).

  164. Zhou, Y., Chen, Z., Shen, H., Zheng, X., Zhao, R., & Duan, X. (2021). A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing, 437, 118–130.

    Article  Google Scholar 

  165. Guo, X., Chen, C., Lu, Y., Meng, K., Chen, H., Zhou, K., Wang, Z., & Xiao, R. (2020). Retinal vessel segmentation combined with generative adversarial networks and dense U-net. IEEE Access, 8, 194551–194560.

    Article  Google Scholar 

  166. Rammy, S. A., Anwar, S. J., Abrar, M., & Zhang, W. (2019). Conditional patch-based generative adversarial network for retinal vessel segmentation. In 2019 22nd international multitopic conference (INMIC) (pp. 1–6).

  167. Son, J., Park, S. J., & Jung, K. H. (2019). Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. Journal of Digital Imaging, 32(3), 499–512.

    Article  Google Scholar 

  168. Yang, T., Wu, T., Li, L., & Zhu, C. (2020). SUD-GAN: Deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. Journal of Digital Imaging, 33(4), 946–957.

    Article  Google Scholar 

  169. He, J., & Jiang, D. (2020). Fundus image segmentation based on improved generative adversarial network for retinal vessel analysis. In 2020 3rd international conference on artificial intelligence and big data (ICAIBD) (pp. 231–236).

  170. Park, K. B., Choi, S. H., & Lee, J. Y. (2020). M-gan: Retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access, 8, 146308–146322.

    Article  Google Scholar 

  171. Huo, Q., Tang, G., & Zhang, F. (2019). Particle swarm optimization for great enhancement in semi-supervised retinal vessel segmentation with generative adversarial networks. In Machine learning and medical engineering for cardiovascular health and intravascular imaging and computer assisted stenting (pp. 112–120).

  172. Kennedy, J., & Eberhart, R. (1995). IEEE, particle swarm optimization. In 1995 IEEE international conference on neural networks proceedings (Vols. 1–61995, p. 1948).

  173. Lahiri, A., Jain, V., Mondal, A., & Biswas, P. K. (2020). Retinal vessel segmentation under extreme low annotation: A gan based semi-supervised approach. In 2020 IEEE international conference on image processing (ICIP) (pp. 418–422).

  174. Liskowski, P., & Krawiec, K. (2016). Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 35(11), 2369–2380.

    Article  Google Scholar 

  175. Tan, J. H., Acharya, U. R., Bhandary, S. V., Chua, K. C., & Sivaprasad, S. (2017). Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. Journal of Computational Science, 20, 70–79.

    Article  Google Scholar 

  176. Guo, Y., Budak, Ü., Vespa, L. J., Khorasani, E., & Şengür, A. (2018). A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy. Measurement, 125, 586–591.

    Article  Google Scholar 

  177. Zhang, Y., & Chung, A. C. (2018). Deep supervision with additional labels for retinal vessel segmentation task. In International conference on medical image computing and computer-assisted intervention (pp. 83–91).

  178. Lu, J., Xu, Y., Chen, M., & Luo, Y. (2018). A coarse-to-fine fully convolutional neural network for fundus vessel segmentation. Symmetry, 10(11), 607.

    Article  Google Scholar 

  179. Dong, Y., Ren, W., & Zhang, K. (2019). Deep supervision adversarial learning network for retinal vessel segmentation. In 2019 12th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1–6).

  180. Mishra, S., Chen, D. Z., & Hu, X. S. (2020). A data-aware deep supervised method for retinal vessel segmentation. In 2020 IEEE 17th international symposium on biomedical imaging (ISBI) (pp. 1254–1257).

  181. Tang, X., Zhong, B., Peng, J., Hao, B., & Li, J. (2020). Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Applied Soft Computing, 93, 106353.

    Article  Google Scholar 

  182. Nasery, V., Soundararajan, K. B., & Galeotti, J. (2020). Learning to segment vessels from poorly illuminated fundus images. In 2020 IEEE 17th international symposium on biomedical imaging (ISBI) (pp. 1232–1236).

  183. Wang, D., Haytham, A., Pottenburgh, J., Saeedi, O., & Tao, Y. (2020). Hard attention net for automatic retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 24(12), 3384–3396.

    Article  Google Scholar 

  184. Budak, Ü., Cömert, Z., Çıbuk, M., & Şengür, A. (2020). DCCMED-Net: densely connected and concatenated multi encoder-decoder CNNs for retinal vessel extraction from fundus images. Medical Hypotheses, 1(134), 109426.

    Article  Google Scholar 

  185. Wu, Y., Xia, Y., Song, Y., Zhang, Y., & Cai, W. (2020). NFN+: A novel network followed network for retinal vessel segmentation. Neural Networks, 126, 153–162.

    Article  Google Scholar 

  186. Tian, C., Fang, T., Fan, Y., & Wu, W. (2020). Multi-path convolutional neural network in fundus segmentation of blood vessels. Biocybernetics and Biomedical Engineering, 40(2), 583–595.

    Article  Google Scholar 

  187. Wang, B., Wang, S., Qiu, S., Wei, W., Wang, H., & He, H. (2020). CSU-Net: A context spatial U-net for accurate blood vessel segmentation in fundus images. IEEE Journal of Biomedical and Health Informatics, 25(4), 1128–1138.

    Article  Google Scholar 

  188. Li, X., Jiang, Y., Li, M., & Yin, S. (2020). Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Transactions on Industrial Informatics, 17(3), 1958–1967.

    Article  Google Scholar 

  189. Li, K., Qi, X., Luo, Y., Yao, Z., Zhou, X., & Sun, M. (2020). Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE Journal of Biomedical and Health Informatics, 25(6), 2071–2081.

    Article  Google Scholar 

  190. Definition of lesion. Merriam-Webster dictionary online. Retrieved November 15, 2021, from www.merriam-webster.com/dictionary/lesion

  191. Chakrabarti, R., Harper, C. A., & Keeffe, J. E. (2012). Diabetic retinopathy management guidelines. Expert Review of Ophthalmology, 7(5), 417–439.

    Article  Google Scholar 

  192. Dubow, M., Pinhas, A., Shah, N., Cooper, R. F., Gan, A., Gentile, R. C., Hendrix, V., Sulai, Y. N., Carroll, J., Chui, T. Y., & Walsh, J. B. (2014). Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Investigative Ophthalmology & Visual Science, 55(3), 1299–1309.

    Article  Google Scholar 

  193. Shan, J., & Li, L. (2016). A deep learning method for microaneurysm detection in fundus images. In 2016 IEEE first international conference on connected health: Applications, systems and engineering technologies (CHASE) (pp. 357–358).

  194. Zhao, H., Li, H., Maurer-Stroh, S., Guo, Y., Deng, Q., & Cheng, L. (2018). Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE Transactions on Medical Imaging, 38(1), 46–56.

    Article  Google Scholar 

  195. Lam, C., Yu, C., Huang, L., & Rubin, D. (2018). Retinal lesion detection with deep learning using image patches. Investigative Ophthalmology & Visual Science, 59(1), 590–596.

    Article  Google Scholar 

  196. Van Grinsven, M. J., van Ginneken, B., Hoyng, C. B., Theelen, T., & Sánchez, C. I. (2016). Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images. IEEE Transactions on Medical Imaging, 35(5), 1273–1284.

    Article  Google Scholar 

  197. Yan, Y., Gong, J., & Liu, Y. (2019). A novel deep learning method for red lesions detection using hybrid feature. In 2019 Chinese control and decision conference (CCDC) (pp. 2287–2292).

  198. Shah, A., Lynch, S., Niemeijer, M., Amelon, R., Clarida, W., Folk, J., Russell, S., Wu, X., & Abràmoff, M. D. (2018). Susceptibility to misdiagnosis of adversarial images by deep learning based retinal image analysis algorithms. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 1454–1457).

  199. Mateen, M., Wen, J., Song, S., & Huang, Z. (2019). Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry, 11(1), 1.

    Article  Google Scholar 

  200. Gondal, W. M., Köhler, J. M., Grzeszick, R., Fink, G. A., & Hirsch, M. (2017). Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. In 2017 IEEE international conference on image processing (ICIP) (pp. 2069–2073).

  201. Kwasigroch, A., Jarzembinski, B., & Grochowski, M. (2018). Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy. In 2018 International Interdisciplinary PhD Workshop (IIPhDW) (pp. 111–116).

  202. Suriyal, S., Druzgalski, C., & Gautam, K. (2018). Mobile assisted diabetic retinopathy detection using deep neural network. In 2018 Global medical engineering physics exchanges/pan American Health Care Exchanges (GMEPE/PAHCE) (pp. 1–4).

  203. Zago, G. T., Andreão, R. V., Dorizzi, B., & Salles, E. O. (2020). Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Computers in Biology and Medicine, 116, 103537.

    Article  Google Scholar 

  204. Khojasteh, P., Júnior, L. A., Carvalho, T., Rezende, E., Aliahmad, B., Papa, J. P., & Kumar, D. K. (2019). Exudate detection in fundus images using deeply-learnable features. Computers in Biology and Medicine, 104, 62–69.

    Article  Google Scholar 

  205. Types of Retinal Hemorrhages. OPTX optometry. Retrieved January 29, 2022, from https://optxoptometry.com/5-types-of-retinal-hemorrhages/#:~:text=These%20hemorrhages%20are%20classified%20by,retinal%20hemorrhages%2C%20and%20vitreous%20hemorrhages

  206. Singh, R. K., & Gorantla, R. (2020). DMENet: Diabetic macular edema diagnosis using hierarchical ensemble of CNNs. PLoS ONE, 15(2), e0220677.

    Article  Google Scholar 

  207. Adem, K. (2018). Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks. Expert Systems with Applications, 114, 289–295.

    Article  Google Scholar 

  208. Mo, J., Zhang, L., & Feng, Y. (2018). Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks. Neurocomputing, 290, 161–171.

    Article  Google Scholar 

  209. Omar, M., Khelifi, F., & Tahir, M. A. (2016). Detection and classification of retinal fundus images exudates using region based multiscale LBP texture approach. In 2016 International conference on control, decision and information technologies (CoDIT) (pp. 227–232).

  210. Wu, L., Wan, C., Wu, Y., & Liu, J. (2017). Generative caption for diabetic retinopathy images. In 2017 International conference on security, pattern analysis, and cybernetics (SPAC) (pp. 515–519).

  211. Wang, J., Luo, J., Liu, B., Feng, R., Lu, L., & Zou, H. (2020). Automated diabetic retinopathy grading and lesion detection based on the modified R-FCN object-detection algorithm. IET Computer Vision, 14(1), 1–8.

    Article  Google Scholar 

  212. Alghamdi, H. S., Tang, H. L., Waheeb, S. A., & Peto, T. (2016). Automatic optic disc abnormality detection in fundus images: A deep learning approach.

  213. Pekala, M., Joshi, N., Liu, T. A., Bressler, N. M., DeBuc, D. C., & Burlina, P. (2019). Deep learning based retinal OCT segmentation. Computers in Biology and Medicine, 114, 103445.

    Article  Google Scholar 

  214. Fu, H., Cheng, J., Xu, Y., Wong, D. W., Liu, J., & Cao, X. (2018). Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging, 37(7), 1597–1605.

    Article  Google Scholar 

  215. Wang, L., Liu, H., Lu, Y., Chen, H., Zhang, J., & Pu, J. (2019). A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomedical Signal Processing and Control, 51, 82–89.

    Article  Google Scholar 

  216. Hasan, M. K., Alam, M. A., Elahi, M. T., Roy, S., & Martí, R. (2021). DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image. Artificial Intelligence in Medicine, 111, 102001.

    Article  Google Scholar 

  217. Zhang, S., Liang, G., Pan, S., & Zheng, L. (2018). A fast medical image super resolution method based on deep learning network. IEEE Access, 7, 12319–12327.

    Article  Google Scholar 

  218. Kheirkhah, E., & Tabatabaie, Z. S. (2015). A hybrid face detection approach in color images with complex background. Indian Journal of Science and Technology, 8(1), 49–60.

    Article  Google Scholar 

  219. Zhang, Y. J. (1996). A survey on evaluation methods for image segmentation. Pattern Recognition, 29(8), 1335–1346.

    Article  Google Scholar 

  220. Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9), 1277–1294.

    Article  Google Scholar 

  221. Heath, M., Sarkar, S., Sanocki, T., & Bowyer, K. (1998). Comparison of edge detectors: A methodology and initial study. Computer Vision and Image Understanding, 69(1), 38–54.

    Article  Google Scholar 

  222. Avcibas, I., Sankur, B., & Sayood, K. (2002). Statistical evaluation of image quality measures. Journal of Electronic Imaging, 11(2), 206–223.

    Article  Google Scholar 

  223. Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: Overview, challenges and the future. In Classification in BioApps (pp. 323–350).

  224. Seth, S., & Agarwal, B. (2018). A hybrid deep learning model for detecting diabetic retinopathy. Journal of Statistics and Management Systems, 21(4), 569–574.

    Article  Google Scholar 

  225. ElTanboly, A., Ghazal, M., Khalil, A., Shalaby, A., Mahmoud, A., Switala, A., El-Azab, M., Schaal, S., & El-Baz, A. (2018). An integrated framework for automatic clinical assessment of diabetic retinopathy grade using spectral domain OCT images. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 1431–1435).

  226. Li, Y. H., Yeh, N. N., Chen, S. J., & Chung, Y. C. (2019). Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network. Mobile Information Systems 2019.

  227. Sisodia, D. S., Nair, S., & Khobragade, P. (2017). Diabetic retinal fundus images: Preprocessing and feature extraction for early detection of diabetic retinopathy. Biomedical and Pharmacology Journal, 10(2), 615–626.

    Article  Google Scholar 

  228. Zhou, L., Zhao, Y., Yang, J., Yu, Q., & Xu, X. (2018). Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Processing, 12(4), 563–571.

    Article  Google Scholar 

  229. Purandare, M., & Noronha, K. (2016). Hybrid system for automatic classification of Diabetic Retinopathy using fundus images. In 2016 Online international conference on green engineering and technologies (IC-GET) (pp. 1–5).

  230. Hossain, N. I., & Reza, S. (2017). Blood vessel detection from fundus image using Markov random field based image segmentation. In 2017 4th international conference on advances in electrical engineering (ICAEE) (pp. 123–127).

  231. Roychowdhury, S., Koozekanani, D. D., & Parhi, K. K. (2014). Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE Journal of Biomedical and Health Informatics, 19(3), 1118–1128.

    Google Scholar 

  232. Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., & Angelopoulou, E. (2013). Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fundus image database. IET Image Processing, 7(4), 373–383.

    Article  MathSciNet  Google Scholar 

  233. Srivastava, R., Wong, D. W., Duan, L., Liu, J., & Wong, T.Y. (2015). Red lesion detection in retinal fundus images using Frangi-based filters. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5663–5666).

  234. Javidi, M., Pourreza, H. R., & Harati, A. (2017). Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation. Computer Methods and Programs in Biomedicine, 139, 93–108.

    Article  Google Scholar 

  235. Chowdhury, A. R., Chatterjee, T., & Banerjee, S. (2019). A random forest classifier-based approach in the detection of abnormalities in the retina. Medical & Biological Engineering & Computing, 57(1), 193–203.

    Article  Google Scholar 

  236. Cao, W., Czarnek, N., Shan, J., & Li, L. (2018). Microaneurysm detection using principal component analysis and machine learning methods. IEEE Transactions on Nanobioscience, 17(3), 191–198.

    Article  Google Scholar 

  237. Lara Rodríguez, L. D., & Urcid Serrano, G. (2016). Exudates and blood vessel segmentation in eye fundus images using the fourier and cosine discrete transforms. Computación y Sistemas, 20(4), 697–708.

    Article  Google Scholar 

  238. Roychowdhury, S. (2016). Classification of large-scale fundus image data sets: a cloud-computing framework. In 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 3256–3259).

  239. Rahim, S. S., Palade, V., Shuttleworth, J., & Jayne, C. (2016). Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Informatics, 3(4), 249–267.

    Article  Google Scholar 

  240. Issac, A., Parthasarthi, M., Dutta, M.K. (2015). An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images. In 2015 2nd international conference on signal processing and integrated networks (SPIN) (pp. 143–147).

  241. Tan, N. M., Xu, Y., Goh, W. B., & Liu, J. (2015). Robust multi-scale superpixel classification for optic cup localization. Computerized Medical Imaging and Graphics, 40, 182–193.

    Article  Google Scholar 

  242. Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., & Acharya, U. R. (2018). Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Information Sciences, 441, 41–49.

    Article  MathSciNet  Google Scholar 

  243. Wang, S., Jin, K., Lu, H., Cheng, C., Ye, J., & Qian, D. (2015). Human visual system-based fundus image quality assessment of portable fundus camera photographs. IEEE Transactions on Medical Imaging, 35(4), 1046–1055.

    Article  Google Scholar 

  244. Almazroa, A., Burman, R., Raahemifar, K., & Lakshminarayanan, V. (2015). Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. Journal of Ophthalmology, 2015, 180972.

    Article  Google Scholar 

  245. Ghosh, A., Sarkar, A., Ashour, A. S., Balas-Timar, D., Dey, N., & Balas, V. E. (2015). Grid color moment features in glaucoma classification. International Journal of Advanced Computer Science and Applications, 6(9), 99–107.

    Article  Google Scholar 

  246. Salam, A. A., Akram, M. U., Wazir, K., Anwar, S. M., & Majid, M. (2015). Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features. In 2015 IEEE international symposium on signal processing and information technology (ISSPIT) (pp. 370–374).

  247. Venhuizen, F. G., van Ginneken, B., Bloemen, B., van Grinsven, M. J., Philipsen, R., Hoyng, C., Theelen, T., & Sánchez, C. I. (2015) Automated age-related macular degeneration classification in OCT using unsupervised feature learning. In Medical imaging 2015: Computer-aided diagnosis (Vol. 9414, p. 94141I).

  248. Jeena, R. S., Sukesh Kumar, A., & Mahadevan, K. (2019). Stroke diagnosis from retinal fundus images using multi texture analysis. Journal of Intelligent & Fuzzy Systems, 36(3), 2025–2032.

    Article  Google Scholar 

  249. Li, X., Pang, T., Xiong, B., Liu, W., Liang, P., & Wang, T. (2017) Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1–11).

  250. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., & Kim, R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410.

    Article  Google Scholar 

  251. Patwari, M. B., Manza, R. R., Rajput, Y. M., Rathod, D. D., Saswade, M., & Deshpande, N. (2016). Classification and calculation of retinal blood vessels parameters. In IEEE's international conferences for convergence of technology, Pune, India (pp. 1–6).

  252. Wu, J., Zhang, S., Xiao, Z., Zhang, F., Geng, L., Lou, S., & Liu, M. (2019). Hemorrhage detection in fundus image based on 2D Gaussian fitting and human visual characteristics. Optics & Laser Technology, 110, 69–77.

    Article  Google Scholar 

  253. Adem, K., Hekim, M., & Demir, S. (2019). Detection of hemorrhage in retinal images using linear classifiers and iterative thresholding approaches based on firefly and particle swarm optimization algorithms. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1), 499–515.

    Article  Google Scholar 

  254. Prentašić, P., & Lončarić, S. (2015). Detection of exudates in fundus photographs using convolutional neural networks. In 2015 9th international symposium on image and signal processing and analysis (ISPA) (pp. 188–192).

  255. Li, Z., He, Y., Keel, S., Meng, W., Chang, R. T., & He, M. (2018). Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology, 125(8), 1199–1206.

    Article  Google Scholar 

  256. Perdomo, O., Otálora, S., González, F. A., Meriaudeau, F., & Müller, H. (2018). Oct-net: A convolutional network for automatic classification of normal and diabetic macular edema using sd-oct volumes. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) 2018 Apr 4 (pp. 1423–1426).

  257. Prentašić, P., & Lončarić, S. (2016). Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Computer Methods and Programs in Biomedicine, 137, 281–292.

    Article  Google Scholar 

  258. Bhat, S. H., & Kumar, P. (2019). Segmentation of optic disc by localized active contour model in retinal fundus image. In Smart innovations in communication and computational sciences (pp. 35–44).

  259. Ghiasi, G., Lin, T. Y., & Le, Q. V. (2018). Dropblock: A regularization method for convolutional networks. arXiv:1810.12890

  260. Baddeley, A. J. (1992). An error metric for binary images. Robust computer vision 5978.

  261. Abdou, I. E., & Pratt, W. K. (1979). Quantitative design and evaluation of enhancement/thresholding edge detectors. Proceedings of the IEEE, 67(5), 753–763.

    Article  Google Scholar 

Download references

Funding

No Funding was received from any organization.

Author information

Authors and Affiliations

Authors

Contributions

Richa Vij: Conceptualization, Methodology, Writing-Original draft preparation, Visualization, Formal analysis. Sakshi Arora: Supervision, Writing- Reviewing and Editing, Validation.

Corresponding author

Correspondence to Richa Vij.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vij, R., Arora, S. A Systematic Review on Deep Learning Techniques for Diabetic Retinopathy Segmentation and Detection Using Ocular Imaging Modalities. Wireless Pers Commun 134, 1153–1229 (2024). https://doi.org/10.1007/s11277-024-10968-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10968-w

Keywords

Navigation