Skip to main content
Log in

Secure Keyword Search over Encrypted Cloud Data Using Blockchain in Digital Document Sharing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Due to the drawbacks of the many-to-many search model for accessing digital records in institutional settings like offices, hospitals, and government agencies, the paper proposes a searchable attribute-based cryptosystem scheme that uses the concept of blockchain technology that provides for authentication and self-validation, and can be applied to secure digital document sharing systems. By keeping the ciphertext document on the cloud, the index on the blockchain, and the smart contract handling the searching of documents, it helps lighten the cloud's computing load. Data integrity and privacy are also guaranteed by this technique, as is the veracity of the findings supplied by the cloud server. The strategy may be used to get rid of redundant information and save space in cloud storage. The concealment of access policy also ensures the privacy of its users. The security study demonstrates that the suggested system protects the privacy of user information and the secrecy of digital document data against adaptively chosen-keyword attacks. Experiments and analysis of performance show that the suggested technique improves upon previous approaches in terms of securing indexes, token generation, efficiency of searching, and verification of results; as a consequence, it is better suited for search situations where a many-to-many search approach is required. It allows for secure and efficient collaboration on electronic documents between departments and external parties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Pachpande, B. R., & Kamble, A. A. (2018). Study of e-wallet awareness and its usage in Mumbai. Journal of Commerce and Management Thought, 9(1), 33–45. https://doi.org/10.5958/0976-478X.2018.00004.6

    Article  Google Scholar 

  2. Padiya, J., & Bantwa, A. (2018). Adoption of E-wallets: A post demonetisation study in Ahmedabad City. Pacific Business Review International, 10(10), 84–95.

    Google Scholar 

  3. Li, X., & Tan, M. (2021). Electronic certificate sharing scheme with searchable attribute-based encryption on blockchain. Journal of Physics: Conference Series, 1757(1), 012161. https://doi.org/10.1088/1742-6596/1757/1/012161

    Article  Google Scholar 

  4. Namasudra, S., Deka, G. C., Johri, P., Hosseinpour, M., & Gandomi, A. H. (2021). The revolution of blockchain: State-of-the-art and research challenges. Archives of Computational Methods in Engineering, 28(3), 1497–1515. https://doi.org/10.1007/s11831-020-09426-0

    Article  Google Scholar 

  5. Qin, X., Huang, Y., Yang, Z., & Li, X. (2021). A blockchain-based access control scheme with multiple attribute authorities for secure cloud data sharing. Journal of Systems Architecture, 112, 101854. https://doi.org/10.1016/j.sysarc.2020.101854

    Article  Google Scholar 

  6. Murthy, C. V., Shri, M. L., Kadry, S., & Lim, S. (2020). Blockchain based cloud computing: Architecture and research challenges. IEEE Access, 8, 205190–205205. https://doi.org/10.1109/ACCESS.2020.3036812

    Article  Google Scholar 

  7. Verma, G. (2022). A secure framework for E-voting using blockchain. In 2022 Second international conference on computer science, engineering and applications (ICCSEA) (pp. 1–5). https://doi.org/10.1109/ICCSEA54677.2022.9936073.

  8. Zhu, Y., Qin, Y., Zhou, Z., Song, X., Liu, G., Chu, W. C. C. (2018). Digital asset management with distributed permission over blockchain and attribute-based access control, In 2018 IEEE international conference on services computing (SCC) (pp. 193–200). https://doi.org/10.1109/SCC.2018.00032.

  9. Paillisse, J., Subira, J, Lopez, A., Rodriguez-Natal, A., Ermagan, V., Maino, F., Cabellos, A. (2019). Distributed access control with blockchain. In ICC 2019–2019 IEEE international conference on communications (ICC), (pp. 1–6). https://doi.org/10.1109/ICC.2019.8761995.

  10. Mhatre, S., Nimkar, A. V. (2019). Secure cloud-based federation for EHR using multi-authority ABE. In Advanced computing and intelligent engineering (pp. 3–15). Singapore: Springer. https://doi.org/10.1007/978-981-13-0224-4_1.

  11. Sahai, A., Waters, B. (2005). Fuzzy identity-based encryption, In Annual international conference on the theory and applications of cryptographic techniques (457–473). Berlin: Springer. https://doi.org/10.1007/11426639_27.

  12. Wang, S., Zhang, Y., & Zhang, Y. (2018). A blockchain-based framework for data sharing with fine-grained access control in decentralized storage systems. IEEE Access, 6, 38437–38450. https://doi.org/10.1109/ACCESS.2018.2851611

    Article  Google Scholar 

  13. Eltayieb, N., Elhabob, R., Hassan, A., & Li, F. (2020). A blockchain-based attribute-based signcryption scheme to secure data sharing in the cloud. Journal of Systems Architecture, 102, 101653. https://doi.org/10.1016/j.sysarc.2019.101653

    Article  Google Scholar 

  14. Benet, J. (2014). Ipfs-content addressed, versioned, p2p file system. arXiv preprint: https://doi.org/10.48550/arXiv.1407.3561.

  15. Cui, S, Asghar, M. R., Russello, G. (2018). Towards blockchain-based scalable and trustworthy file sharing. In 2018 27th International conference on computer communication and networks (ICCCN) (pp. 1–2). https://doi.org/10.1109/ICCCN.2018.8487379.

  16. Dong, C., Russello, G., & Dulay, N. (2011). Shared and searchable encrypted data for untrusted servers. Journal of Computer Security, 19(3), 367–397. https://doi.org/10.3233/JCS-2010-0415

    Article  Google Scholar 

  17. Shamir, A. (1984). Identity-based cryptosystems and signature schemes. In Workshop on the theory and application of cryptographic techniques (pp. 47–53). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39568-7_5.

  18. Boneh, D., Franklin, M. (2001). Identity-based encryption from the Weil pairing. In Annual international cryptology conference (pp. 213–229). Berlin, Heidelberg: Springer.https://doi.org/10.1007/3-540-44647-8_13.

  19. Waters, B. (2005). Efficient identity-based encryption without random oracles, In Annual international conference on the theory and applications of cryptographic techniques (pp. 114–127). Berlin, Heidelberg: Springer. https://doi.org/10.1007/11426639_7.

  20. Waters, B. (2009). Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In Annual international cryptology conference (pp. 619–636). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-03356-8_36.

  21. Lew ko, A., Waters, B. (2010). New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In Theory of cryptography conference (pp. 455–479). Berlin, Heidelberg: Springer.https://doi.org/10.1007/978-3-642-11799-2_27.

  22. Hohenberger, S., Waters, B. (2014). Online/offline attribute-based encryption. In International workshop on public key cryptography (pp. 293–310). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-54631-0_17.

  23. Namasudra, S. (2019). An improved attribute-based encryption technique towards the data security in cloud computing. Concurrency and Computation: Practice and Experience, 31(3), e4364. https://doi.org/10.1002/cpe.4364

    Article  Google Scholar 

  24. Wang, H., He, D., Shen, J., Zheng, Z., Yang, X., & Au, M. H. (2018). Fuzzy matching and direct revocation: A new CP-ABE scheme from multilinear maps. Soft Computing, 22(7), 2267–2274. https://doi.org/10.1007/s00500-017-2488-8

    Article  Google Scholar 

  25. Wang, H., Zheng, Z., Wu, L., & Li, P. (2017). New directly revocable attribute-based encryption scheme and its application in cloud storage environment. Cluster Computing, 20(3), 2385–2392. https://doi.org/10.1007/s10586-016-0701-7

    Article  Google Scholar 

  26. Khader, D. (2014). Introduction to attribute based searchable encryption. In IFIP international conference on communications and multimedia security (pp. 131–135). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-44885-4_11.

  27. Sun, W., Yu, S., Lou, W., Hou, Y. T., Li, H. (2014). Protecting your right: Attribute-based keyword search with fine-grained owner-enforced search authorization in the cloud. In IEEE INFOCOM 2014-IEEE conference on computer communications (pp. 226–234). https://doi.org/10.1109/INFOCOM.2014.6847943.

  28. Wang, H., Dong, X., & Cao, Z. (2017). Multi-value-independent ciphertext-policy attribute based encryption with fast keyword search. IEEE Transactions on Services Computing. https://doi.org/10.1109/TSC.2017.2753231

    Article  Google Scholar 

  29. Liang, K., & Susilo, W. (2015). Searchable attribute-based mechanism with efficient data sharing for secure cloud storage. IEEE Transactions on Information Forensics and Security, 10(9), 1981–1992. https://doi.org/10.1109/TIFS.2015.2442215

    Article  Google Scholar 

  30. Yin, H., Zhang, J., Xiong, Y., Ou, L., Li, F., Liao, S., & Li, K. (2019). CP-ABSE: A ciphertext-policy attribute-based searchable encryption scheme. IEEE Access, 7, 5682–5694. https://doi.org/10.1109/ACCESS.2018.2889754

    Article  Google Scholar 

  31. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N. (2014). A framework and compact constructions for non-monotonic attribute-based encryption (pp. 275–292). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-54631-0_16.

  32. Miao, Y., Ma, J., Liu, X., Li, X., Jiang, Q., & Zhang, J. (2017). Attribute-based keyword search over hierarchical data in cloud computing. IEEE Transactions on Services Computing, 13(6), 985–998. https://doi.org/10.1109/TSC.2017.2757467

    Article  Google Scholar 

  33. Sun, W., Shucheng, Y., Wenjing, L. Y., Thomas, H., & Hui, L. (2014). Protecting your right: Verifiable attribute-based keyword search with fine-grained owner-enforced search authorization in the cloud. IEEE Transactions on Parallel and Distributed Systems, 27(4), 1187–1198. https://doi.org/10.1109/TPDS.2014.2355202

    Article  Google Scholar 

  34. Garima, V. (2022). Secure client-side deduplication scheme for cloud with dual trusted execution environment. IETE Journal of Research, 69, 7015–7025. https://doi.org/10.1080/03772063.2021.2017360

    Article  Google Scholar 

  35. Liu, X., Tingting, L., Xiaomei, H., Xiaotao, Y., & Shufen, N. (2020). Verifiable attribute-based keyword search over encrypted cloud data supporting data deduplication. IEEE Access, 8, 52062–52074. https://doi.org/10.1109/ACCESS.2020.2980627

    Article  Google Scholar 

  36. Sun, J., Yao, X., Wang, S., & Wu, Y. (2020). Blockchain-based secure storage and access scheme for electronic medical records in IPFS. IEEE Access, 8, 59389–59401. https://doi.org/10.1109/ACCESS.2020.2982964

    Article  Google Scholar 

  37. Elisa, N., Yang, L., Chao, F., & Cao, Y. (2018). A framework of blockchain-based secure and privacy-preserving E-government system. Wireless Networks, 29, 1005–1015. https://doi.org/10.1007/s11276-018-1883-0

    Article  Google Scholar 

  38. Wang, H., & Song, Y. (2018). Secure cloud-based EHR system using attribute-based cryptosystem and blockchain. Journal of medical systems, 42(8), 1–9. https://doi.org/10.1007/s10916-018-0994-6

    Article  MathSciNet  Google Scholar 

  39. Nakamoto, N. (2008). Bitcoin: A peer-to-peer electronic cash system, Decentralized Business Review, p. 21260. https://klausnordby.com/bitcoin/Bitcoin_Whitepaper_Document_HD.pdf.

  40. Mahore, V., Aggarwal, P., Andola, N., Venkatesan, S. (2019). Secure and privacy focused electronic health record management system using permissioned blockchain. In 2019 IEEE conference on information and communication technology (pp. 1–6). https://doi.org/10.1109/CICT48419.2019.9066204.

  41. Dang, N. T., Tran, H. M., Nguyen, S. V., Maleszka, M., & Le, H. D. (2021). Sharing secured data on peer-to-peer applications using attribute-based encryption. Journal of Information and Telecommunication, 5(4), 440–459. https://doi.org/10.1080/24751839.2021.1941574

    Article  Google Scholar 

  42. EzhilArasi, V. K., Gandhi, I., & Kulothungan, K. (2022). Auditable attribute-based data access control using blockchain in cloud storage. The Journal of Supercomputing, 78, 10772–10798. https://doi.org/10.1007/s11227-021-04293-3

    Article  Google Scholar 

  43. Wang, S., Wang, X., & Zhang, Y. (2019). A secure cloud storage framework with access control based on blockchain. IEEE Access, 7, 112713–112725. https://doi.org/10.1109/ACCESS.2019.2929205

    Article  Google Scholar 

  44. Shamir, A. (1979). How to share a secret? Communications of the ACM, 22(11), 612–613. https://doi.org/10.1145/359168.359176

    Article  MathSciNet  Google Scholar 

  45. CryptoCompare. “What is the ‘gas’ in Ethereum?” CryptoCompare. https://www.cryptocompare.com/coins/guides/what-is-the-gas-in-ethereum/. Accessed on April 2021.

  46. Ethereum. “Ethereum Project”. https://www.ethereum.org/. Accessed on April 2021.

  47. Rastogi, G., & Sushil, R. (2015). Cloud computing security and homomorphic encryption. IUP Journal of Computer Sciences, 9(3), 48–58.

    Google Scholar 

  48. Verma, G., Pathak, N., & Sharma, N. (2021). A secure framework for health record management using blockchain in cloud environment. Journal of Physics: Conference Series, 1998(1), 012019. https://doi.org/10.1088/1742-6596/1998/1/012019

    Article  Google Scholar 

  49. Verma, G., & Adhikari, S. (2020). Cloud computing security issues: A stakeholder’s perspective. SN Computer Science, 1(6), 1–8. https://doi.org/10.1007/s42979-020-00353-2

    Article  Google Scholar 

  50. Verma, G., & Kanrar, S. (2022). A novel model to enhance the data security in cloud environment. Multiagent and Grid Systems, 18(1), 45–63. https://doi.org/10.3233/MGS-220361

    Article  Google Scholar 

  51. Verma, G. (2022). Blockchain-based privacy preservation framework for healthcare data in cloud environment. Journal of Experimental & Theoretical Artificial Intelligence, 36, 147–160. https://doi.org/10.1080/0952813X.2022.2135611

    Article  Google Scholar 

  52. Verma, G., & Kanrar, S. (2023). Secure document sharing model based on blockchain technology and attribute-based encryption. Multimedia Tools and Applications, 83, 16377–16394. https://doi.org/10.1007/s11042-023-16186-z

    Article  Google Scholar 

  53. Kanrar, S. (2012). Enhancement of job allocation in private Cloud by distributed processing. In Proceeding: CCSEIT '12: Second international conference on computational science, engineering and information (pp. 94–98). https://doi.org/10.1145/2393216.2393233.

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Kanrar.

Ethics declarations

Conflict of interest

The author declare that there is no conflict of interest.

Ethical Approval

This manuscript does not contain any study performed with humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, G., Kanrar, S. Secure Keyword Search over Encrypted Cloud Data Using Blockchain in Digital Document Sharing. Wireless Pers Commun 134, 975–996 (2024). https://doi.org/10.1007/s11277-024-10947-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10947-1

Keywords

Navigation