Skip to main content
Log in

A Quad Port MIMO Antenna Designed with an X-Shaped Decoupling Structure for Wideband Millimeter-Wave (mm-Wave) 5G FR2 New Radio (N258/N261) Bands Applications

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article presents a newly developed quad port-MIMO antenna, showcasing notable advancements in performance and an extensive impedance bandwidth. The antenna design is founded on a symmetrical configuration, incorporating an X-shaped decoupling structure, alongside employing the multi-slit and multi-slot techniques. These enhancements culminate in a compact, low-profile antenna measuring 40 × 40 × 0.8 mm, while maintaining a remarkable wideband capability. For experimental purposes, the proposed antenna is fabricated using Roger RT/Duroid 5880 with a dielectric constant of 2.2 and a thickness of 0.8 mm. Our investigations reveal that the antenna's impedance bandwidth spans from 22.5 to 29.2 GHz (bandwidth of 6.7 GHz), ensuring isolation levels surpassing −27 dB. The designed MIMO antenna offers an envelope correlation coefficient of 0.004, a diversity gain of 10.0 dB and a peak gain of 4.25 dB. Remarkably, this antenna successfully balances wide bandwidth, compact dimensions, outstanding isolation and superior MIMO diversity metrics. These qualities make it a desirable choice for 5G new radio bands N258 (24.25–27.5 GHz) and N261 (27.5–28.35 GHz) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

All the data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Implemented through High Frequency Structure Simulator (HFSS) software.

References

  1. Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G., Schulz, J., Samimi, M., & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular. IEEE Access, 1, 335–349.

    Article  Google Scholar 

  2. Powell, J. & Chandrakasan, A. (2004). Differential and single ended elliptical antennas for 3.1–10.6 GHz ultrawideband communication. In Proceedings of the antennas and propagation society international symposium, Sendai, Japan, pp 2935–2938

  3. El-Hameed, A. S. A., Wahab, M. G., Elshafey, N. A., & Elpeltagy, M. S. (2021). Quad-port UWB MIMO antenna based on LPF with vast rejection band. AEU-International Journal of Electronics and Communications, 134, 153712.

    Google Scholar 

  4. Manoharan, H., Selvarajan, S., Yafoz, A., Alterazi, H. A., & Chen, C. (2022). Deep conviction systems for biomedical applications using intuiting procedures with cross point approach. Frontiers in Public Health, 10, 909628.

    Article  Google Scholar 

  5. Iqbal, A., Smida, A., Alazemi, A. J., Waly, M. I., Mallat, N. K., & Kim, S. (2020). Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices. IEEE Access, 8, 17935–17944.

    Article  Google Scholar 

  6. Kaiser, T., Feng, Z. & Dimitrov, E. (2009). An overview of ultra-wide-band systems with MIMO. In Proceedings IEEE. 97(2), pp 285–312

  7. Mandloi, M. S., Gupta, P., Parmar, A., et al. (2023). Beamforming MIMO array antenna for 5G-millimeter-wave application. Wireless Personal Communications, 129, 153–172. https://doi.org/10.1007/s11277-022-10090-9

    Article  Google Scholar 

  8. Toktas, A., & Akdagli, A. (2015). Compact multiple-input multiple-output antenna with low correlation for ultra-wide-band applications. IET Microwaves Antennas Propagation, 9, 822–829.

    Article  Google Scholar 

  9. Ali, W. A. E., Ibrahim, A. A., & Ahmed, A. E. (2023). Dual-band millimeter wave 2×2 MIMO slot antenna with low mutual coupling for 5G networks. Wireless Personal Communications, 129, 2959–2976. https://doi.org/10.1007/s11277-023-10267-w

    Article  Google Scholar 

  10. Nabil, M., & Faisal, M. M. A. (2021). Design, simulation and analysis of a high gain small size array antenna for 5G wireless communication. Wireless Personal Communications, 116, 2761–2776. https://doi.org/10.1007/s11277-020-07819-9

    Article  Google Scholar 

  11. Pant, M., Malviya, L., & Choudhary, V. (2021). A 28 GHz corporate series-fed taper antenna array for fifth-generation wireless communication. In N. Marriwala, C. C. Tripathi, D. Kumar, & S. Jain (Eds.), mobile radio communications and 5G networks. Lecture notes in networks and systems. (Vol. 140). Singapore: Springer.

    Google Scholar 

  12. Okan, T. (2020). Design and analysis of a quad-band substrate-integrated-waveguide cavity backed slot antenna for 5G applications. International Journal of RF Microwave Computer Aided Engingeering. https://doi.org/10.1002/mmce.22236

    Article  Google Scholar 

  13. Hasan, M. N., Bashir, S., & Chu, S. (2019). Dual band omnidirectional millimeter wave antenna for 5G communications. Journal of Electromagnetic Waves and Applications, 33(12), 1581–1590. https://doi.org/10.1080/09205071.2019.1617790

    Article  Google Scholar 

  14. Njogu, P., Sanz-Izquierdo, B., Elibiary, A., Jun, S. Y., Chen, Z., & Bird, D. (2020). 3D printed fingernail antennas for 5G applications. IEEE Access, 8, 228711–228719. https://doi.org/10.1109/ACCESS.2020.3043045

    Article  Google Scholar 

  15. Bang, J., & Choi, J. (2020). A compact hemispherical beam-coverage phased array antenna unit for 5G mm-wave applications. IEEE Access, 8, 139715–139726.

    Article  Google Scholar 

  16. Ullah, U., Al-Hasan, M., Koziel, S., & Mabrouk, I. B. (2021). A series inclined slot-fed circularly polarized antenna for 5G 28 GHz applications. IEEE Antennas and Wireless Propagation Letters, 20(3), 351–355.

    Article  Google Scholar 

  17. Sun, Y.-X., Wu, D., Fang, X. S., & Yang, N. (2020). Compact quarter-mode substrate-integrated waveguide dual-frequency millimeter-wave antenna array for 5G applications. IEEE Antennas and Wireless Propagation Letters, 19(8), 1405–1409. https://doi.org/10.1109/LAWP.2020.3003305

    Article  Google Scholar 

  18. Sultan, K. S., Abdullah, H. H., Abdallah, E. A., & El-Hennawy, H. S. (2020). Metasurface-based dual polarized MIMO antenna for 5G smartphones using CMA. IEEE Access, 8, 37250–37264. https://doi.org/10.1109/ACCESS.2020.2975271

    Article  Google Scholar 

  19. Hussain, N., Awan, W. A., Ali, W., Naqvi, S., Zaidi, A., & Le, T. T. (2021). Compact wideband patch antenna and its MIMO configuration for 28 GHz applications. AEU-International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2021.153612

    Article  Google Scholar 

  20. Chandra, R., Sarkar, D., Ganguly, D., Saha, C., Siddiqui, J. Y., & Antar, Y. M. M. (2020). Design of NFRP based sir-loaded two element MIMO antenna system for 28/38 GHz sub mm-wave 5G applications. IEEE 3rd 5G world forum (5GWF) (pp. 514–518). Bangalore: IEEE.

    Google Scholar 

  21. Marzouk, H. M., Ahmed, M. I., & Shaalan, A. H. A. (2019). Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications. Progress in Electromagnetics Research C, 93, 103–117. https://doi.org/10.2528/PIERC19032303

    Article  Google Scholar 

  22. Hakim, M. L., Uddin, M. J. & Hoque, M. J. (2020). 28/38 GHz dual-band microstrip patch antenna with DGS and stub-slot configurations and Its 2×2 MIMO antenna design for 5g wireless communication. In IEEE region 10 symposium (TENSYMP), Dhaka, Bangladesh, pp 56–59. Doi: https://doi.org/10.1109/TENSYMP50017.2020.9230601.

  23. Sengar, S., Malik, P. K., Reddy, S. V., & Das, S. (2023). Design of a Novel Capsule-Shaped Compact UWB Antenna for 5G Wireless Applications. Journal of Nano- And Electronic Physics, 15(4), 04031. https://doi.org/10.21272/jnep.15(4).04031

    Article  Google Scholar 

  24. Khan, M. S., Capobianco, A. D., Iftikhar, A., Shubair, R. M., Anagnostou, D. E., & Braaten, B. D. (2017). Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines. IET Microwaves Antennas Propagation, 11(7), 997–1002.

    Article  Google Scholar 

  25. Hussain, M. et al. (2021). Simple geometry multi-bands antenna for millimeter-wave applications at 28 GHz, 38 GHz, and 55 GHz allocated to 5G systems. In 2021 46th international conference on infrared, millimeter and terahertz waves (IRMMW-THz). IEEE

  26. Hussain, M., Awan, I. A., Mazhar, A., Rizvi, S. N. R., Alibakhshikenari, M., Falcone, F., & Limiti, E. (2020). A Simple low-profile broadband antenna design for 5G millimeter-wave applications over 38 GHz spectrum. In 2020 IEEE MTT-S Latin America microwave conference (LAMC 2020). IEEE pp 1–4

  27. Awan, I. A. et al. (2021). Single patch fractal-shaped antenna with small footprint area and high radiation properties for wide operation over 5G region. In 2021 46th international conference on infrared, millimeter and terahertz waves (IRMMW-THz). IEEE

  28. Hussain, M. et al. (2022) Ultra-wideband mimo antenna realization for indoor Ka-band applications. In 2022 United States national committee of URSI national radio science meeting (USNC-URSI NRSM). IEEE

  29. Hussain, M. et al. (2022) A simple geometrical frequency reconfigurable antenna with miniaturized dimensions for 24.8/28GHz 5G applications. In 2022 16th European conference on antennas and propagation (EuCAP). IEEE

  30. Hussain, M. et al. (2022) Circularly polarized wideband antenna for 5G millimeter wave application. In 2022 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting (AP-S/URSI). IEEE

  31. Jensen, M., & Wallace, J. W. (2004). A review of antennas and propagation for MIMO wireless communication. IEEE Transaction on Antennas and Propagation, 52, 2810–2824.

    Article  Google Scholar 

  32. Sengar, S., Malik, P. K., Srivastava, P. C., Srivastava, K., & Gehlot, A. (2023). Performance analysis of MIMO antenna design with high isolation techniques for 5 G wireless systems. International Journal of Antennas and Propagation, 2023, 23. https://doi.org/10.1155/2023/1566430

    Article  Google Scholar 

  33. Malik, P. K., Wadhwa, D. S., & Khinda, J. S. (2020). A survey of device to device and cooperative communication for the future cellular networks. International Journal of Wireless Information Networks, 27, 411–432.

    Article  Google Scholar 

  34. Addepalli, T., Kamili, J. B., Boddu, S., Manda, R., Nella, A., & Kumar, B. K. (2023). A 4-element crescent shaped two-sided MIMO antenna for UWB, X and Ku band wireless applications. Wireless Networks, 29, 1–16.

    Article  Google Scholar 

  35. Jetti, C. R., Addepalli, T., Devireddy, S. R., Tanimki, G. K., Al-Gburi, A. J. A., Zakaria, Z., & Sunitha, P. (2023). Design and analysis of modified U-shaped four element MIMO antenna for dual-band 5G millimeter wave applications. Micromachines, 14(8), 1545.

    Article  Google Scholar 

  36. Babu Kamili, J., Addepalli, T., Perli, B. R., Kiran Kumar, B., & Mohammed, Y. T. (2023). Design of a novel four-element Koch-Sierpinski fractal mmWave antenna for 5G applications. International Journal of Electronics. https://doi.org/10.1080/00207217.2023.2248662

    Article  Google Scholar 

  37. Addepalli, T., Sharma, M., Kumar, M. S., Naveen Kumar, G., Kapula, P. R., & Kumar, C. M. (2023). Self-isolated miniaturized four-port multiband 5G sub 6 GHz MIMO antenna exclusively for n77/n78 & n79 wireless band applications. Wireless Networks, 30, 1–17.

    Google Scholar 

  38. Addepalli, T., & Anitha, V. R. (2022). Parametric analysis of compact UWB-MIMO antenna with improved isolation using parasitic reflectors and protruded ground strips. Wireless Personal Communications, 123, 1–17.

    Article  Google Scholar 

  39. Suverna, S., & Malik, P. K. (2022). A comprehensive survey of massive-MIMO based on 5G antennas.". International Journal of RF and Microwave Computer-Aided Engineering, 32(12), e23496.

    Google Scholar 

  40. Haroon, M. S., Abbas, Z. H., Muhammad, F., & Abbas, G. (2019). Coverage analysis of cell edge users in heterogeneous wireless networks using Stienen’s model and RFA SCHEME. International Journal of Communication Systems, 33, e4147.

    Article  Google Scholar 

  41. Tiwari, P., & Malik, P. K. (2021). Wide band micro-strip antenna design for higher “X” band. International Journal of e-Collaboration (IJeC)., 17(4), 60–74. https://doi.org/10.4018/IJeC.2021100105(ISSN:1548-3673)

    Article  Google Scholar 

  42. Khan, J., Sehrai, D. A., Khan, M. A., Khan, H. A., Ahmad, S., Ali, A., Arif, A., Memon, A. A., & Khan, S. (2019). Design and performance comparison of rotated Y-shaped antenna using different metamaterial surfaces for 5G mobile devices. Computers Material Continua, 60, 409–420.

    Article  Google Scholar 

  43. Wang, P., Li, Y., Song, L., & Vucetic, B. (2015). Multi-gigabit millimeter waves wireless communications for 5G: From fixed access to cellular networks. IEEE Communications Magazine, 53, 168–178.

    Article  Google Scholar 

  44. Sulyman, A. I., Alwarafy, A., MacCartney, G. R., Rappaport, T. S., & Alsanie, A. (2016). Directional radio propagation path loss models for millimeter-wave wireless networks in the 28-, 60-, and 73-GHz bands. IEEE Transactions on Wireless Communications, 15, 6939–6947.

    Article  Google Scholar 

  45. Ikram, M., Sharawi, M. S., & Shamim, A. (2017). A novel very wideband integrated antenna system for 4G and 5G mm-waveapplications. Microwaves Optical Technology Letters, 59, 3082–3088.

    Article  Google Scholar 

  46. Hussain, S. A., Taher, F., Alzaidi, M. S., Hussain, I., Ghoniem, R. M., Sree, M. F. A., & Lalbakhsh, A. (2017). Wideband, high-gain, and compact four-port MIMO antenna for future 5G devices operating over Ka-band spectrum. Applied Sciences, 13, 4380.

    Article  Google Scholar 

  47. Wani, Z., Abegaonkar, M. P., & Koul, S. K. (2018). A 28-GHz antenna for 5G MIMO applications. Progress in Electromagnetics Research Letters, 78, 73–79.

    Article  Google Scholar 

  48. Sehrai, D. A., Abdullah, M., Altaf, A., Kiani, S. H., Muhammad, F., Tufail, M., Irfan, M., Glowacz, A., & Rahman, S. (2020). a novel high gain wideband MIMO antenna for 5G millimeter wave applications. Electronics, 9, 1031.

    Article  Google Scholar 

  49. Khalid, M., Naqvi, S. I., Hussain, N., Rahman, M., Fawad, Mirjavadi, S. S., Khan, M. J., & Amin, Y. (2020). 4-port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 9, 71.

    Article  Google Scholar 

  50. Arabi, O., See, C. H., Ullah, A., Ali, N., Liu, B., Abd-Alhameed, R., McEwan, N. J., & Excell, P. S. (2020). Compact wideband MIMO diversity antenna for mobile applications using multi-layered structure. Electronics, 9, 1307.

    Article  Google Scholar 

  51. Ibrahim, A. A., Ali, W. A. E., Alathbah, M., & Sabek, A. R. (2023). Four-Port 38 GHz MIMO Antenna with High Gain and Isolation for 5G Wireless Networks. Sensors, 23, 3557.

    Article  Google Scholar 

  52. Ud Din, I., Alibakhshikenari, M., Virdee, B. S., Jayanthi, R. K. R., Ullah, S., Khan, S., See, C. H., Golunski, L., & Koziel, S. (2023). Frequency-selective surface-based MIMO antenna array for 5G millimeter-wave applications. Sensors, 23, 7009.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the IIT Delhi, CARE-center, India for the support provided.

Funding

No funding is available for this work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception, design and simulations. Data collection, analysis, and simulation were performed by SS, PKM and SD. Additional input to analysis, model improvement, and simulation was given by TI, RS and SA. All authors contributed to complete the writing and presentation of the whole manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Sudipta Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Ethical Approval

This research study complied with the ethical standards.

Consent to Participate

Informed consent was obtained from all authors.

Consent for Publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengar, S., Malik, P.K., Das, S. et al. A Quad Port MIMO Antenna Designed with an X-Shaped Decoupling Structure for Wideband Millimeter-Wave (mm-Wave) 5G FR2 New Radio (N258/N261) Bands Applications. Wireless Pers Commun 134, 857–880 (2024). https://doi.org/10.1007/s11277-024-10934-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10934-6

Keywords

Navigation