Skip to main content

Advertisement

Log in

Sugar and Salt Concentration Detection in Water Employing ENZ Metamaterial Microwave Sensor

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A design of high sensitivity Vivaldi antenna is introduced for detecting the low sugar and salt concentrations in water. The reason for selecting the Vivaldi antenna configuration is to provide two desired features; ultra-wideband and a high directivity so the surrounding clutter effect can be minimized. The prospective antenna embraces the ultra-wideband from 4 to 11 GHz. Two techniques are exploited to improve the antenna detectability; epsilon-near-zero (ENZ) metamaterial and antenna aperture amending. The ENZ metamaterial is very sensitive to the permittivity of the substrate, so any loading effect can easily alter the electric field distribution and hence affect the antenna phase properties. The aperture amending is used to improve substrate-air matching. An equivalent circuit model is scrutinized for further emphasis of the ENZ metamaterial operation, showing good agreement with EM simulation results. In terms of phase variation, the designed antenna is employed to sense sugar and salt in water. The amount of sugar and salt affects the material characteristics of the solution and, as a result, the reflected phases. Practical observations reveal that when the sugar and salt contents in the liquid increase, the phase falls. At 5 GHz the difference between the highest and lowest sugar concentrations is about 3° in the sugar case and 5° in the salt case, but at 8 GHz, the phase difference is about 30o in the sugar case and about 50° in the salt case. The sensitivity can be increased by operating at a higher frequency since the proposed antenna can detect very low levels (1%) of salt and sugar concentrations. The time-domain analysis is discussed, revealing low distortion of received pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Code availability

Enquiries about code availability should be directed to the authors.

References

  1. Bertuzzo, E., & Mari, L. (2017). Hydrology, water resources and the epidemiology of water-related diseases. Advances in Water Resources, 108, 329–331.

    Article  Google Scholar 

  2. Afrand, M., Esfe, M. H., Abedini, E., & Teimouri, H. (2017). Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Physica E: Low-dimensional Systems and Nanostructures, 87, 242–247.

    Article  Google Scholar 

  3. Zhang, C., Ye, H., Liu, F., He, Y., Kong, W., & Sheng, K. (2016). Determination and visualization of pH values in anaerobic digestion of water hyacinth and rice straw mixtures using hyperspectral imaging with wavelet transform denoising and variable selection. Sensors, 16(2), 244.

    Article  Google Scholar 

  4. Kim, T. Y., Hong, S. A., & Yang, S. (2015). A solid-state thin-film Ag/AgCl reference electrode coated with graphene oxide and its use in a pH sensor. Sensors, 15(3), 6469–6482.

    Article  Google Scholar 

  5. Mohammad, A. M., Chowdhury, T., Biswas, B., & Absar, N. (2018). Food poisoning and intoxication: A global leading concern for human health. Food safety and preservation (pp. 307–352). Academic Press.

    Google Scholar 

  6. Posudin, Y., Peiris, K., & Kays, S. (2015). Non-destructive detection of food adulteration to guarantee human health and safety. Ukrainian Food Journal, 4(2), 1–54.

    Google Scholar 

  7. Haq, M. A. U., Armghan, A., Aliqab, K., & Alsharari, M. (2023). A Review of contemporary microwave antenna sensors: Designs, fabrication techniques, and potential application. IEEE Access, 11, 40064–40074.

    Article  Google Scholar 

  8. Gartley, K. L. (2011). Recommended methods for measuring soluble salts in soils. Recommended soil testing procedures for the northeastern United States. Northeastern Regional Publication, 493, 1864–1872.

    Google Scholar 

  9. Bircan, C., & Barringer, S. A. (1998). Salt-starch interactions as evidenced by viscosity and dielectric property measurements. Journal of Food Science, 63(6), 983–986.

    Article  Google Scholar 

  10. Omer, A. E., Shaker, G., Safavi-Naeini, S., Ngo, K., Shubair, R. M., Alquié, G., & Kokabi, H. (2020). Multiple-cell microfluidic dielectric resonator for liquid sensing applications. IEEE Sensors Journal, 21(5), 6094–6104.

    Article  Google Scholar 

  11. Bhushan, S., Kumar, S., Singh, N., & Kumar, S. (2021). Defected ground split ring resonator-based sensor for adulteration detection in fluids. Wireless Personal Communications, 121, 1593–1606.

    Article  Google Scholar 

  12. Govind, G., & Akhtar, M. J. (2019). Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions. IEEE Sensors Journal, 19(24), 11900–11907.

    Article  Google Scholar 

  13. Cheng, E. M., Fareq, M., Shahriman, A. B., Mohd Afendi, R., Lee, Y. S., Khor, S. F., & Jusoh, M. A. (2014). Development of microstrip patch antenna sensing system for salinity and sugar detection in water. International Journal of Mechanical and Mechatronics Engineering, 15(5), 31–36.

    Google Scholar 

  14. Rahman, M. N., Islam, M. T., & Samsuzzaman Sobuz, M. (2018). Salinity and sugar detection system using microstrip patch antenna. Microwave and Optical Technology Letters, 60(5), 1092–1096.

    Article  Google Scholar 

  15. Islam, M. T., Rahman, M. N., Singh, M. S. J., & Samsuzzaman, M. (2018). Detection of salt and sugar contents in water on the basis of dielectric properties using microstrip antenna-based sensor. IEEE Access, 6, 4118–4126.

    Article  Google Scholar 

  16. Njokweni, S. N., & Kumar, P. (2020). Salt and sugar detection system using a compact microstrip patch antenna. Int J Smart Sensing Intell Syst, 13(1), 1–9.

    Google Scholar 

  17. Jain, S. (2022). Early detection of salt and sugar by microstrip moisture sensor based on direct transmission method. Wireless Personal Communications, 122(1), 593–601.

    Article  Google Scholar 

  18. Kaur, J., & Khanna, R. (2022). Novel monkey-wrench-shaped microstrip patch sensor for food evaluation and analysis. Journal of the Science of Food and Agriculture, 102(4), 1443–1456.

    Article  Google Scholar 

  19. Rahman, M. N., Hassan, S. A., Samsuzzaman, M., Singh, M. S. J., & Islam, M. T. (2019). Determination of salinity and sugar concentration using microwave sensor. Microwave and Optical Technology Letters, 61(2), 361–364.

    Article  Google Scholar 

  20. El Gharbi, M., Martinez-Estrada, M., Fernández-García, R., & Gil, I. (2021). Determination of salinity and sugar concentration by means of a circular-ring monopole textile antenna-based sensor. IEEE Sensors Journal, 21(21), 23751–23760.

    Article  Google Scholar 

  21. Harnsoongnoen, S. (2023). A non-contact method for detecting and distinguishing chloride and carbonate salts based on dielectric properties using a microstrip patch sensor. Chemosensors, 11(3), 158.

    Article  Google Scholar 

  22. Devapriya, A. T., & Robinson, S. (2019). Investigation on metamaterial antenna for terahertz applications. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 18, 377–389.

    Article  Google Scholar 

  23. Alu, A., Silveirinha, M. G., Salandrino, A., & Engheta, N. (2007). Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical review B, 75(15), 155410.

    Article  Google Scholar 

  24. Nasir, M., Iftikhar, A., Shafique, M. F., Saka, B., Nikolaou, S., & Anagnostou, D. E. (2023). Broadband dual-podal multilayer Vivaldi antenna array for remote sensing applications. IET Microwaves, Antennas & Propagation. https://doi.org/10.1049/mia2.12354

    Article  Google Scholar 

  25. Abd El-Hameed, A. S., Mahmoud, N., Barakat, A., Abdel-Rahman, A. B., Allam, A., & Pokharel, R. K. (2016). A 60-GHz on-chip tapered slot Vivaldi antenna with improved radiation characteristics. In 2016 10th European Conference on Antennas and Propagation (EuCAP) (pp. 1–5). IEEE.

  26. Abd El-Hameed, A. S., Mahmoud, N., B arakat, A., Abdel-Rahman, A. B., Allam, A., & Pokharel, R. K. (2016, April). A 60-GHz on-chip tapered slot Vivaldi antenna with improved radiation characteristics. In 2016 10th European Conference on Antennas and Propagation (EuCAP) (pp. 1–5). IEEE.

  27. Molaei, A., Kaboli, M., Mirtaheri, S. A., & Abrishamian, S. (2014, January). Beam-tilting improvement of balanced antipodal vivaldi antenna using a dielectric lens. In Proc. 2nd Iranian Conference on Engineering Electromagnetics (Vol. 577, p. 581).

  28. Fei, P., Jiao, Y. C., Hu, W., & Zhang, F. S. (2011). A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE antennas and wireless propagation letters, 10, 127–130.

    Article  Google Scholar 

  29. Amiri, M., Tofigh, F., Ghafoorzadeh-Yazdi, A., & Abolhasan, M. (2017). Exponential antipodal Vivaldi antenna with exponential dielectric lens. IEEE Antennas and Wireless Propagation Letters, 16, 1792–1795.

    Google Scholar 

  30. Teni, G., Zhang, N., Qiu, J., & Zhang, P. (2013). Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas and Wireless Propagation Letters, 12, 417–420.

    Article  Google Scholar 

  31. Popescu, A. S., Bendoym, I., Rexhepi, T., & Crouse, D. (2016). Anisotropic zero index material: A method of reducing the footprint of Vivaldi antennas in the UHF range. Progress In Electromagnetics Research C, 65, 33–43.

    Article  Google Scholar 

  32. Budarapu, S. K., Sunder, M. S., & Ramakrishna, B. (2023). Performance enhancement of patch antenna using ris and metamaterial superstrate for wireless applications. Progress In Electromagnetics Research C, 130, 95–105.

    Article  Google Scholar 

  33. El-Nady, S., Zamel, H. M., Hendy, M., Zekry, A. A., & Attiya, A. (2018). Gain enhancement of a millimeter wave antipodal vivaldi antenna by epsilon-near-zero metamaterial. Progress In Electromagnetics Research C, 85, 105–116.

    Article  Google Scholar 

  34. Smith, D. R., Schultz, S., Markoš, P., & Soukoulis, C. M. (2002). Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical review B, 65(19), 195104.

    Article  Google Scholar 

  35. Zhou, B., Li, H., Zou, X., & Cui, T. J. (2011). Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials. Progress In Electromagnetics Research, 120, 235–247.

    Article  Google Scholar 

  36. Abd El-Hameed, A. S., Wahab, M. G., Elboushi, A., & Elpeltagy, M. S. (2019). Miniaturized triple band-notched quasi-self complementary fractal antenna with improved characteristics for UWB applications. AEU-International Journal of Electronics and Communications, 108, 163–171.

    Google Scholar 

Download references

Funding

This research has received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwer S. Abd El-Hameed.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nady, S., Afifi, A. & Abd El-Hameed, A.S. Sugar and Salt Concentration Detection in Water Employing ENZ Metamaterial Microwave Sensor. Wireless Pers Commun 134, 189–208 (2024). https://doi.org/10.1007/s11277-024-10899-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10899-6

Keywords

Navigation