Skip to main content
Log in

Wearable Beam Steering Branch Line Coupler Fed Array Antenna for WBAN Applications

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper, introduce a wireless body area network antenna array with beam steering that is fed by a branch line coupler (BLC). The proposed BLC feeding network and the antenna are fabricated on wearable jeans substrate, and the proposed antenna operates at the ISM-I (2.45 GHz) band. The Branch line coupler fed array antenna (BLCAA) allows for 25° of beam steering with a half-power beam width of 25° and 35° in the presence of free space and the human body, respectively. The proposed antenna’s specific absorption rate was found to be 0.21 W/Kg, which complies with IEEE regulations. To assess the effect of bending on the antenna's performance, simulations and tests were conducted, revealing that the antenna’s characteristics were minimally affected by bending. The BLCAA exhibits good impedance matching with high peak gain and a good radiation pattern. The simulated results are experimentally validated and found good approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets analyzed during the research are not publicly available as they are original but are available from the corresponding author on reasonable request.”

Code Availability

Not applicable.

References

  1. Lim, H. B., Baumann, D., & Li, E. P. (2010). A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks. IEEE Transactions on Biomedical Engineering, 58(3), 689–697.

    Article  PubMed  Google Scholar 

  2. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1658–1686.

    Article  Google Scholar 

  3. Rahim, H. A., Abdulmalek, M., Soh, P. J., Rani, K. A., Hisham, N., & Vandenbosch, G. A. E. (2016). Subject-specific effect of metallic body accessories on path loss of dynamic on-body propagation channels. Scientific Reports, 6(1), 1–12.

    Article  Google Scholar 

  4. Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., & Seneviratne, A. (2017). A survey of wearable devices and challenges. IEEE Communications Surveys & Tutorials, 19(4), 2573–2620.

    Article  Google Scholar 

  5. Kumpuniemi, T., Hämäläinen, M., Yazdandoost, K. Y., & Iinatti, J. (2017). Human body shadowing effect on dynamic UWB on-body radio channels. IEEE antennas and wireless propagation letters, 16, 1871–1874.

    Article  ADS  Google Scholar 

  6. Liu, Z., Liu, B., & Chen, C. W. (2017). Buffer-aware resource allocation scheme with energy efficiency and QoS effectiveness in wireless body area networks. IEEE Access, 5, 20763–20776.

    Article  Google Scholar 

  7. IEEE Standard for Local and Metropolitan Area Networks—Part 15. 6: Wireless Body Area Networks, IEEE Standard 802.15.6–2012, 2012.

  8. Aun, N. F. M., Soh, P. J., Al-Hadi, A. A., Jamlos, M. F., Vandenbosch, G. A., & Schreurs, D. (2017). Revolutionizing wearables for 5G: 5G technologies: Recent developments and future perspectives for wearable devices and antennas. IEEE Microwave Magazine, 18(3), 108–124.

    Article  Google Scholar 

  9. Preethichandra, D. M. G., Piyathilaka, L., Izhar, U., Samarasinghe, R., & De Silva, L. C. (2023). Wireless body area networks and their applications–A review. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3239008

    Article  Google Scholar 

  10. Soh, P. J., Vandenbosch, G., Wee, F. H., van den Bosch, A., Martinez-Vazquez, M., & Schreurs, D. (2015). Specific absorption rate (SAR) evaluation of textile antennas. IEEE Antennas and Propagation Magazine, 57(2), 229–240.

    Article  ADS  Google Scholar 

  11. Ashyap, A. Y., Abidin, Z. Z., Dahlan, S. H., Majid, H. A., Shah, S. M., Kamarudin, M. R., & Alomainy, A. (2017). Compact and low-profile textile EBG-based antenna for wearable medical applications. IEEE Antennas and Wireless Propagation Letters, 16, 2550–2553.

    Article  ADS  Google Scholar 

  12. Fernandez, M., Espinosa, H. G., Thiel, D. V., & Arrinda, A. (2018). Wearable slot antenna at 2.45 GHz for off-body radiation: Analysis of efficiency, frequency shift, and body absorption. Bioelectromagnetics, 39(1), 25–34.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar Biswas, A., & Chakraborty, U. (2019). Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications. IET Microwaves, Antennas & Propagation, 13(4), 498–504.

    Article  Google Scholar 

  14. Zahran, S. R., Abdalla, M. A., & Gaafar, A. (2019). New thin wide-band bracelet-like antenna with low SAR for on-arm WBAN applications. IET Microwaves, Antennas & Propagation, 13(8), 1219–1225.

    Article  Google Scholar 

  15. Singh, V. K., Dhupkariya, S., & Bangari, N. (2017). Wearable ultra wide dual band flexible textile antenna for WiMax/WLAN application. Wireless Personal Communications, 95(2), 1075–1086.

    Article  Google Scholar 

  16. Gaber, S. M., El-Shalaby, N. A., & Malhat, H. A. (2022). Dual-band antenna array with reduced mutual-coupling for wearable wireless communication applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-09111-w

    Article  Google Scholar 

  17. Mashagba, H. A., Rahim, H. A., Adam, I., Jamaluddin, M. H., Yasin, M. N. M., Jusoh, M., & Soh, P. J. (2021). A hybrid mutual coupling reduction technique in a dual-band MIMO textile antenna for WBAN and 5G applications. IEEE Access, 9, 150768–150780.

    Article  Google Scholar 

  18. Le, T. T., Kim, Y. D., & Yun, T. Y. (2021). A triple-band dual-open-ring high-gain high-efficiency antenna for wearable applications. IEEE Access, 9, 118435–118442.

    Article  Google Scholar 

  19. Zaidi, N. I., Abd Rahman, N. H., Yahya, M. F., Nordin, M. S. A., Subahir, S., Yamada, Y., & Majumdar, A. (2022). Analysis on bending performance of the electro-textile antennas with bandwidth enhancement for wearable tracking application. IEEE Access, 10, 31800–31820.

    Article  Google Scholar 

  20. Wagih, M. (2021). Broadband low-loss on-body UHF to millimeter-wave surface wave links using flexible textile single wire transmission lines. IEEE Open Journal of Antennas and Propagation, 3, 101–111.

    Article  Google Scholar 

  21. Martinez, I., Mao, C. X., Vital, D., Shahariar, H., Werner, D. H., Jur, J. S., & Bhardwaj, S. (2020). Compact, low-profile and robust textile antennas with improved bandwidth for easy garment integration. IEEE Access, 8, 77490–77500.

    Article  Google Scholar 

  22. Agneessens, S. (2017). Coupled eighth-mode substrate integrated waveguide antenna: Small and wideband with high-body antenna isolation. IEEE Access, 6, 1595–1602.

    Article  Google Scholar 

  23. Wagih, M., Weddell, A. S., & Beeby, S. (2019). Millimeter-wave textile antenna for on-body RF energy harvesting in future 5G networks. In 2019 IEEE Wireless Power Transfer Conference (WPTC) (pp. 245–248). IEEE.

  24. Jais, M. I., Jamlos, M. F. B., Jusoh, M., Sabapathy, T., Kamarudin, M. R., Ahmad, R. B., & Ishak, N. L. (2013). A novel 2.45 GHz switchable beam textile antenna (SBTA) for outdoor wireless body area network (WBAN) applications. Progress in Electromagnetics Research, 138, 613–627.

    Article  Google Scholar 

  25. Loss, C., Gouveia, C., Salvado, R., Pinho, P., & Vieira, J. (2021). Textile antenna for bio-radar embedded in a car seat. Materials, 14(1), 213.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alonso, L., Ver Hoeye, S., Fernandez, M., Vázquez, C., Camblor, R., Hotopan, G.,& Las-Heras, F. (2015, May). Millimetre wave textile integrated waveguide beamforming antenna for radar applications. In Global Symposium on Millimeter-Waves (GSMM) (pp. 1–3). IEEE.

  27. Casula, G. A., Montisci, G., & Muntoni, G. (2023). A novel design for dual-band wearable textile eighth-mode SIW antennas. IEEE Access, 11, 11555–11569.

    Article  Google Scholar 

  28. Kaur, H., & Chawla, P. (2022). Performance analysis of novel wearable textile antenna design for medical and wireless applications. Wireless Personal Communications, 124(2), 1475–1491.

    Article  Google Scholar 

  29. Aprilliyani, R., Dzagbletey, P. A., Lee, J. H., Jang, M. J., So, J. H., & Chung, J. Y. (2020). Effects of textile weaving and finishing processes on textile-based wearable patch antennas. IEEE Access, 8, 63295–63301.

    Article  Google Scholar 

  30. Furse, C., Christensen, D. A., Durney, C. H., & Nagel, J. (2018). Basic introduction to bio electromagnetics. CRC Press.

    Google Scholar 

  31. Pozar, D. M. (2011). Microwave engineering. Wiley.

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, and analysis. Design simulation, analysis, hardware development, and experiments were performed by Ankur Utsav and Ritesh KB. The first draft of the manuscript was written by Ankur Utsav and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Ankur Utsav.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utsav, A., Badhai, R.K. Wearable Beam Steering Branch Line Coupler Fed Array Antenna for WBAN Applications. Wireless Pers Commun 133, 1887–1904 (2023). https://doi.org/10.1007/s11277-023-10851-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10851-0

Keywords

Navigation