Skip to main content
Log in

A Compact Wideband Printed 4 × 4 MIMO Antenna with High Gain and Circular Polarization Characteristics for mm-wave 5G NR n260 Applications

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact MIMO antenna with circular polarization, high gain, wide operating bandwidth, and a compact size is designed and suggested for mm-wave 5G applications. The propounded MIMO configuration contains four patch elements of similar geometries in \(4\times 4\) arrangement with individual E-shaped partial ground planes. The desired range of wide operating band with circular polarization, high gain, and high isolation has been achieved by modifying the structure of each single antenna element by integrating circular and semi-circular shaped slots in presence of rectangular slots loaded partial ground planes. The suggested MIMO antenna has been fabricated on a 1.67 mm thick Rogers RT/duroid 5870 substrate of \(31.5\times 38.5\)  mm2. The fabricated and tested prototype of the suggested antenna verifies the simulation results. The suggested MIMO configuration offers a wide bandwidth of 8.1 GHz (34.4–42.5 GHz), high peak gain of about 18.5 dB and isolation of ≤−16 dB for the full working range. Besides, the presented antenna is circular polarized. This property allows the proposed antenna to emit the electromagnetic waves with a rotating electric field which allows the signal to propagate in different directions, providing better coverage and reducing the impact of signal polarization. The proposed antenna exhibits a standard MIMO performance by offering attractive diversity parameters. The proposed MIMO antenna is appropriate for 5G NR frequency band n260 (37–40 GHz) covering the allocated bandwidth requirements of different countries including UK (37–40), USA (37–37.6), Canada (37.6–40.0), and Australia (39 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Osseiran, et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35. https://doi.org/10.1109/MCOM.2014.6815890

    Article  Google Scholar 

  2. Khwandah, S. A., Cosmas, J. P., Lazaridis, P. I., et al. (2021). Massive MIMO systems for 5G communications. Wireless Personal Communications, 120, 2101–2115. https://doi.org/10.1007/s11277-021-08550-9

    Article  Google Scholar 

  3. Karthigaiveni, S., Reddy, M. A., & Pandeeswari, R. (2023). Aperture coupled four element MIMO antenna loaded with NBSRR superstrates for 5G wireless communications. Wireless Personal Communications. https://doi.org/10.1007/s11277-023-10359-7

    Article  Google Scholar 

  4. Ali, W. A. E., Ibrahim, A. A., & Ahmed, A. E. (2023). Dual-band millimeter wave 2 × 2 MIMO slot antenna with low mutual coupling for 5G networks. Wireless Personal Communications, 129, 2959–2976. https://doi.org/10.1007/s11277-023-10267-w

    Article  Google Scholar 

  5. Sharaf, M. H., Zaki, A. I., Hamad, R. K., & Omar, M. M. M. (2020). A novel dual-band 38/60 GHz patch antenna for 5G mobile handsets. Sensors, 20, 2541. https://doi.org/10.3390/s20092541

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Liu, P., Zhu, X., Zhang, Y., Wang, X., Yang, C., & Jiang, Z. H. (2020). Patch antenna loaded with paired shorting pins and H-shaped slot for 28/38 GHz dual-band MIMO applications. IEEE Access, 8, 23705–23712. https://doi.org/10.1109/ACCESS.2020.2964721

    Article  Google Scholar 

  7. Hu, C.-N., Yu, C.-H., Hsaio, T.-W., & Lin, D.-P. (2015). Design of a mm-wave microstrip antenna array. In International workshop on electromagnetics: Applications and student innovation competition (iWEM). https://doi.org/10.1109/iWEM.2015.7365030

  8. Okan, T. (2020). Design and analysis of a quad-band substrate-integrated-waveguide cavity backed slot antenna for 5G applications. International Journal of RF and Microwave Computer-Aided Engineering, 30. https://doi.org/10.1002/mmce.22236

  9. Hasan, M. N., Bashir, S., & Chu, S. (2019). Dual band omnidirectional millimeter wave antenna for 5G communications. Journal of Electromagnetic Waves and Applications, 33(12), 1581–1590. https://doi.org/10.1080/09205071.2019.1617790

    Article  ADS  Google Scholar 

  10. Hashem, Y. A. M. K., Haraz, O. M., & El-Sayed, E. D. M. (2016). 6-Element 28/38 GHz dual-band MIMO PIFA for future 5G cellular systems. In 2016 IEEE international symposium on antennas and propagation (APSURSI). https://doi.org/10.1109/APS.2016.7695905

  11. Ahmad, W, & Khan, W. T. (2017). Small form factor dual band (28/38 GHz) PIFA antenna for 5G applications. In 2017 IEEE MTT-S international conference on microwaves for intelligent mobility (ICMIM). https://doi.org/10.1109/ICMIM.2017.7918846

  12. Aghoutane, B., Das, S., EL Ghzaoui, M., Madhav, B. T. P., El Faylalia, H. (2022). A novel dual band high gain 4-port millimeter wave MIMO antenna array for 28/37 GHz 5G applications. AEU-International Journal of Electronics and Communications, 145. https://doi.org/10.1016/j.aeue.2021.154071

  13. Rekha, S., & Jino Ramson, S. R. (2022). Parasitically isolated 4-element MIMO antenna for 5G/WLAN applications. Arabian Journal for Science and Engineering, 47, 14711–14720. https://doi.org/10.1007/s13369-022-06952-w

    Article  Google Scholar 

  14. Aghoutane, B., El Ghzaoui, M., Das, S., Ali, W., El Faylali, H. (2022). A dual wideband high gain 2×2 MIMO monopole antenna with an end-launch connector model for 5G millimeter wave mobile applications. International Journal of RF and Microwave Computer-Aided Engineering, 32. https://doi.org/10.1002/mmce.23088

  15. Bilal, M., Naqvi, S. I., Hussain, N., Amin, Y., & Kim, N. (2022). High-isolation MIMO antenna for 5G millimeter-wave communication systems. Electronics, 11(6), 962. https://doi.org/10.3390/electronics11060962

    Article  Google Scholar 

  16. Al-Bawri, S. S., Islam, M. T., Shabbir, T., Muhammad, G., Islam, S., & Wong, H. Y. (2020). Hexagonal shaped near zero index (NZI) metamaterial based MIMO antenna for millimeter-wave application. IEEE Access, 8, 181003–181013.

    Article  Google Scholar 

  17. Rajat Girjashankar, P., & Upadhyaya, T. (2021). Substrate integrated waveguide fed dual band quad-elements rectangular dielectric resonator MIMO antenna for millimeter wave 5G wireless communication systems. AEU - International Journal of Electronics and Communications, 137, 153821. https://doi.org/10.1016/j.aeue.2021.153821

    Article  Google Scholar 

  18. Kamal, M. M., Yang, S., Ren, X. C., Altaf, A., Kiani, S. H., Anjum, M. R., Anjum, M. R., Iqbal, A., & Saeed, S. I. (2021). Infinity shell shaped MIMO antenna array for mm-wave 5G applications. Electronics, 10(2), 165. https://doi.org/10.3390/electronics10020165

    Article  CAS  Google Scholar 

  19. Alnemr, F., Ahmed, M. F., & Shaalan, A. A. (2021). A compact 28/38 GHz MIMO circularly polarized antenna for 5G applications. Journal of Infrared, Millimeter, and Terahertz Waves, 42(3), 338–355. https://doi.org/10.1007/s10762-021-00770-1

    Article  Google Scholar 

  20. Sabek, A. R., Ali, W. A. E., & Ibrahim, A. A. (2022). Minimally coupled two-element MIMO antenna with dual band (28/38 GHz) for 5G wireless communications. Journal of Infrared, Millimeter, and Terahertz Waves, 43, 335–348. https://doi.org/10.1007/s10762-022-00857-3

    Article  Google Scholar 

  21. Hussain, M., Awan, I. A., Rizvi, S. M., Alibakhshikenari, M., Falcone, F., & Limiti, E. (2021, August). Simple geometry multi-bands antenna for millimeter-wave applications at 28 GHz, 38 GHz, and 55 GHz allocated To 5G systems. In 2021 46th International conference on infrared, millimeter and terahertz waves (IRMMW-THz) (pp. 1–2). IEEE.‏ https://doi.org/10.1109/IRMMW-THz50926.2021.9567407

  22. Awan, I. A., Hussain, M., Rizvi, S. N. R., Alibakhshikenari, M., Falcone, F., & Limiti, E. (2021, August). Single patch fractal-shaped antenna with small footprint area and high radiation properties for wide operation over 5G Region. In 2021 46th international conference on infrared, millimeter and terahertz waves (IRMMW-THz) (pp. 1–2). IEEE.‏ https://doi.org/10.1109/IRMMW-THz50926.2021.9567165

  23. Hussain, M., Awan, I. A., Mazhar, A., Rizvi, S. N. R., Alibakhshikenari, M., Falcone, F., & Limiti, E. (2021, May). A simple low-profile broadband antenna design for 5G millimeter-wave applications over 38 GHz spectrum. In 2020 IEEE MTT-S Latin America microwave conference (LAMC 2020) (pp. 1–4). IEEE.‏ https://doi.org/10.1109/LAMC50424.2021.9662400

  24. Hussain, M., Jarchavi, S. M. R., Naqvi, S. I., Gulzar, U., Khan, S., Alibakhshikenari, M., & Huynen, I. (2021). Design and fabrication of a printed tri-band antenna for 5G applications operating across Ka-, and V-band spectrums. Electronics, 10(21), 2674. https://doi.org/10.3390/electronics10212674

    Article  Google Scholar 

  25. Hussain, M., Awan, W. A., Ali, E. M., Alzaidi, M. S., Alsharef, M., Elkamchouchi, D. H., Alzahrani, A., & Fathy Abo Sree, M. (2022). Isolation improvement of parasitic element-loaded dual-band MIMO antenna for mm-wave applications. Micromachines, 13(11), 1918. https://doi.org/10.3390/mi13111918

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vasu Babu, K., Anuradha, B., & Das, S. (2019). Design & analysis of a dual-band MIMO antenna to reduce the mutual coupling. Journal of Instrumentation, 14, P09023.

    Article  ADS  Google Scholar 

  27. Vasu Babu, K., Das, S., Lakrit, S., Patel, S. K., Madhav, B. T. P., & Medkour, H. (2021). Compact dual-band printed MIMO antenna with very low mutual coupling for WLAN, Wi-MAX, sub-6 GHz 5G and X-band satellite communication applications. Progress in Electromagnetics Research C, 117, 99–114.

    Article  Google Scholar 

  28. Suresh, A. C., Reddy, T. S., Madhav, B. T. P., Das, S., Lavadiya, S., Algarni, A. D., & El-Shafai, W. (2022). Investigations on stub-based UWB-MIMO antennas to enhance isolation using characteristic mode analysis. Micromachines, 13, 2088. https://doi.org/10.3390/mi13122088

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding is available for this work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception, design, and simulation. Data collection, analysis, and simulation were initially carried out by FK, MEG and SD. Additional input to analysis and simulation was given by TI and BTPM. All authors contributed to complete the writing, editing, and presentation of the whole manuscript. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Mohammed El Ghzaoui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Code Availability (Software application or custom code)

Implemented through High frequency structure simulator (HFSS) software.

Data Availability

There are no supplementary materials, and the data is available upon reasonable request.

Ethics Approval

This research study complied with the ethical standards.

Consent to Participate

Informed consent was obtained from all authors.

Consent for Publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiouach, F., El Ghzaoui, M., Das, S. et al. A Compact Wideband Printed 4 × 4 MIMO Antenna with High Gain and Circular Polarization Characteristics for mm-wave 5G NR n260 Applications. Wireless Pers Commun 133, 1857–1886 (2023). https://doi.org/10.1007/s11277-023-10850-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10850-1

Keywords

Navigation