Skip to main content
Log in

A Review on Recently Reported Grounded CMOS Active Inductors

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An active inductor (AI) circuit is a widely used component in tuning circuits, filters, oscillators, etc. These circuits offer various advantages over spiral inductors, namely less chip area consumption, high-quality factor (Q-factor), easy tunability, etc., and are also easier to be integrated with an IC. This paper brings together the various grounded AIs constructed using CMOS technology, most of which have been proposed in the last two decades. A detailed analysis has been presented along with the assessment of the various AI designs, with respect to a number of factors, like inductance value and power consumption. Furthermore, these circuits have been exploited to realize a common application such as a band pass filter, and the resulting behaviour of each design has been noted as well to give a fair comparison among all. The simulations have been carried out in Cadence Virtuoso, using 90 nm CMOS technology. To obtain an unbiased comparison, a common supply voltage of 1.2 V is used for simulating all the circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability

All data is available and can be provided when it is asked for. Cadence Virtuoso software has been used for simulations.

Code Availability

Not applicable.

References

  1. Stuber, M., et al. (1998) SOI CMOS with high-performance passive components for analog, RF, and mixed signal design. In 1998 IEEE international SOI conference proceedings (Cat No. 98CH36199) (pp. 19). IEEE.

  2. Long, J. R. (2003). Passive components for silicon RF and MMIC design. IEICE Transactions on Electronics, 86(6), 1022–1031.

    Google Scholar 

  3. Fedder, G. K., & Mukherjee, T. (2005). Tunable RF and analog circuits using on-chip MEMS passive components. In ISSCC, 2005 IEEE international digest of technical papers. Solid-state circuits conference (pp. 33). IEEE.

  4. Liu, Bo., et al. (2011). Synthesis of integrated passive components for high-frequency RF ICs based on evolutionary computation and machine learning techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(10), 1458–1468.

    Article  Google Scholar 

  5. Geen, M. W., et al. (1989). Miniature multilayer spiral inductors for GaAs MMICs. In 11th annual gallium arsenide integrated circuit (GaAs IC) symposium (pp. 83). IEEE

  6. Chaki, S., et al. (1995). Experimental study on spiral inductors. In Proceedings of 1995 IEEE MTT-S international microwave symposium (pp. 100). IEEE

  7. Burghartz, J. N., Jenkins, K. A., & Soyuer, M. (1996). Multilevel-spiral inductors using VLSI interconnect technology. IEEE Electron Device Letters, 17(9), 428–430.

    Article  Google Scholar 

  8. Craninckx, J., & Steyaert, M. S. J. (1997). A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors. IEEE Journal of Solid-State Circuits, 32(5), 736–744.

    Article  Google Scholar 

  9. Yue, C. P., & Simon Wong, S. (1998). On-chip spiral inductors with patterned ground shields for Si-based RF ICs. IEEE Journal of Solid-State Circuits, 33(5), 743–752.

    Article  Google Scholar 

  10. Burghartz, J. N., et al. (1998). RF circuit design aspects of spiral inductors on silicon. IEEE Journal of Solid-State Circuits, 33(12), 2028–2034.

    Article  Google Scholar 

  11. Niknejad, A. M., & Meyer, R. G. (1998). Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs. IEEE Journal of Solid-State Circuits, 33(10), 1470–1481.

    Article  Google Scholar 

  12. Ribas, R. P., et al. (2000). Micromachined microwave planar spiral inductors and transformers. IEEE Transactions on Microwave Theory and Techniques, 48(8), 1326–1335.

    Article  Google Scholar 

  13. Yoon, J.-B., et al. (2002). CMOS-compatible surface-micromachined suspended-spiral inductors for multi-GHz silicon RF ICs. IEEE Electron Device Letters, 23(10), 591–593.

    Article  Google Scholar 

  14. Cao, Yu., et al. (2003). Frequency-independent equivalent-circuit model for on-chip spiral inductors. IEEE Journal of Solid-State Circuits, 38(3), 419–426.

    Article  Google Scholar 

  15. Watson, A. C., et al. (2004). A comprehensive compact-modeling methodology for spiral inductors in silicon-based RFICs. IEEE Transactions on Microwave Theory and Techniques, 52(3), 849–857.

    Article  Google Scholar 

  16. Huang, F., et al. (2006). Frequency-independent asymmetric double-$ pi $ equivalent circuit for on-chip spiral inductors: Physics-based modeling and parameter extraction. IEEE Journal of Solid-State Circuits, 41(10), 2272–2283.

    Article  Google Scholar 

  17. Roy, S. C. D. (1964). A novel high-Q inductance and a tuned oscillator for micro-miniature circuits. Proceedings of the IEEE, 52(2), 214–215.

    Article  Google Scholar 

  18. Ho, R. Y. C., & Adams, D. K. (1969). Have you tried active microwave filters. Microwaves, 8(7), 44–49.

    Google Scholar 

  19. Roy, S. C. D., & Nagarajan, V. (1970). On inductor simulation using a unity-gain amplifier. IEEE Journal of Solid-State Circuits, 5(3), 95–98.

    Article  Google Scholar 

  20. Fliegler, E. (1971). Operating criteria for active microwave inductors (correspondence). IEEE Transactions on Microwave Theory and Techniques, 19(1), 89–91.

    Article  Google Scholar 

  21. Bindra, A. K., & Kodali, V. P. (1972). Some properties of the microwave active filters. IETE Journal of Research, 18(11), 519–526.

    Article  Google Scholar 

  22. Patranabis, D., & Sen, P. C. (1971). A simulated inductor and an RC oscillator. International Journal of Electronics, 31(5), 441–451.

    Article  Google Scholar 

  23. Allen, P., & Means, J. (1972). Inductor simulation derived from an amplifier rolloff characteristic. IEEE Transactions on Circuit Theory, 19(4), 395–397.

    Article  Google Scholar 

  24. Murata, T., & Rikoski, R. A. (1975). Mutator simulated floating inductors. International Journal of Electronics Theoretical and Experimental, 39(2), 229–232.

    Article  Google Scholar 

  25. Senani, R. (1979). Novel active RC circuit for floating-inductor simulation. Electronics Letters, 15(21), 679–680.

    Article  Google Scholar 

  26. Sinsky, J. H., & Westgate, C. R. (1996). A new approach to designing active MMIC tuning elements using second-generation current conveyors. IEEE microwave and guided wave letters, 6(9), 326–328.

    Article  Google Scholar 

  27. Ferri, G., Guerrini, N. C., & Diqual, M. (2003). CCII-based floating inductance simulator with compensated series resistance. Electronics Letters, 39(22), 1560–1562.

    Article  Google Scholar 

  28. Gift, S. J. G. (2004). New simulated inductor using operational conveyors. International Journal of Electronics, 91(8), 477–483.

    Article  Google Scholar 

  29. Yuce, E., Cicekoglu, O., & Minaei, S. (2006). CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integrated Circuits and Signal Processing, 46(3), 287–291.

    Article  Google Scholar 

  30. Yuce, E., & Minaei, S. (2008). A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(1), 266–275.

    Article  MathSciNet  Google Scholar 

  31. Ferri, G., et al. (2008). Vibration damping using CCII-based inductance simulators. IEEE Transactions on Instrumentation and Measurement, 57(5), 907–914.

    Article  Google Scholar 

  32. Kacar, F., & Kuntman, H. (2011). CFOA-based lossless and lossy inductance simulators. Radioengineering, 20(3), 627–631.

    Google Scholar 

  33. Said, L. A., et al. (2011). Active realization of doubly terminated LC ladder filters using current feedback operational amplifier (CFOA) via linear transformation. AEU-International Journal of Electronics and Communications, 65(9), 753–762.

    Google Scholar 

  34. Senani, R., & Bhaskar, D. R. (2012). New lossy/loss-less synthetic floating inductance configuration realized with only two CFOAs. Analog Integrated Circuits and Signal Processing, 73(3), 981–987.

    Article  Google Scholar 

  35. Alpaslan, H., & Yuce, E. (2015). Inverting CFOA based lossless and lossy grounded inductor simulators. Circuits, Systems, and Signal Processing, 34(10), 3081–3100.

    Article  Google Scholar 

  36. Dogan, M., & Yuce, E. (2019). CFOA based a new grounded inductor simulator and its applications. Microelectronics Journal, 90, 297–305.

    Article  Google Scholar 

  37. Al-Absi, M. A. (2019). Realization of a large values floating and tunable AI. IEEE Access, 7, 42609–42613.

    Article  Google Scholar 

  38. Yu, F., et al. (2020). CCII and FPGA realization: a multistable modified fourth-order autonomous Chua’s chaotic system with coexisting multiple attractors. Complexity, 2020, 1–17.

    Article  Google Scholar 

  39. Craninckx, J., & Steyaert, M. S. J. (1995). A 1.8-GHz CMOS low-phase-noise voltage-controlled oscillator with prescaler. IEEE Journal of Solid-State Circuits, 30(12), 1474–1482.

    Article  Google Scholar 

  40. Gregorian, R. (1980). Filtering techniques with switched-capacitor circuits. Microelectronics Journal, 11(2), 13–21.

    Article  Google Scholar 

  41. Bastida, E. M., Donzelli, G. P., & Scopelliti, L. (1989). GaAs monolithic microwave integrated circuits using broadband tunable AIs. In 1989 19th European microwave conference (pp. 40). IEEE.

  42. Zhang, G. F., et al. (1992). Microwave active filter using GaAs monolithic floating AI. Microwave and Optical Technology Letters, 5(8), 381–388.

    Article  Google Scholar 

  43. Zhang, G. F., & Gautier, J. L. (1993). Broad-band, lossless monolithic microwave active floating inductor. IEEE Microwave and Guided Wave Letters, 3(4), 98–100.

    Article  Google Scholar 

  44. Campbell, C. F., & Weber, R. J. (1992). Design of a broadband microwave BJT active inductor circuit. In 1991 proceedings of the 34th midwest symposium on circuits and systems (pp. 29). IEEE.

  45. Kaunisto, R., Alinikula, P., & Stadius, K. (1995). active inductors for GaAs and bipolar technologies. Analog Integrated Circuits and Signal Processing, 7(1), 35–48.

    Article  Google Scholar 

  46. Pipilos, S., et al. (1996). A Si 1.8 GHz RLC filter with tunable center frequency and quality factor. IEEE Journal of Solid-State Circuits, 31(10), 1517–1525.

    Article  Google Scholar 

  47. Hara, S., et al. (1988). Broad-band monolithic microwave active inductor and its application to miniaturized wide-band amplifiers. IEEE Transactions on Microwave Theory and Techniques, 36(12), 1920–1924.

    Article  Google Scholar 

  48. Anuar, N. Supply clock generation (driver) circuit for 2PASCL: Hara active inductor equivalent circuit and simulation.

  49. Ismail, M., Wassenaar, R., & Morrison, W. (1991). A high-speed continuous-time bandpass VHF filter in MOS technology. In 1991 IEEE international sympoisum on circuits and systems (pp. 75). IEEE.

  50. Thanachayanont, A., & Payne, A. (1996). VHF CMOS integrated active inductor. Electronics Letters, 32(11), 999–1000.

    Article  Google Scholar 

  51. Hsiao, C.-C., et al. (2002). Improved quality-factor of 0.18-μm CMOS active inductor by a feedback resistance design. IEEE Microwave and Wireless Components Letters, 12(12), 467–469.

    Article  Google Scholar 

  52. Reja, M. M., Filanovsky, I. M., & Moez, K. (2008). Wide tunable CMOS active inductor. Electronics Letters, 44(25), 1461–1463.

    Article  Google Scholar 

  53. Vema Krishnamurthy, S., El-Sankary, K., & El-Masry, E. (2010). Noise-cancelling CMOS active inductor and its application in RF band-pass filter design. International Journal of Microwave Science and Technology, 2010, 8.

    Article  Google Scholar 

  54. Tang, A., Yuan, F., & Law, E. (2009). A new constant-Q CMOS active inductor with applications to low-noise oscillators. Analog Integrated Circuits and Signal Processing, 58(1), 77–80.

    Article  Google Scholar 

  55. Uyanik, H. U., & Tarim, Nil. (2007). Compact low voltage high-Q CMOS active inductor suitable for RF applications. Analog Integrated Circuits and Signal Processing, 51(3), 191–194.

    Article  Google Scholar 

  56. Minaei, S., & Yuce, E. (2012). A simple CMOS-based inductor simulator and frequency performance improvement techniques. AEU-International Journal of Electronics and Communications, 66(11), 884–891.

    Google Scholar 

  57. Zhong, L., et al. (2016). An improved CMOS-based inductor simulator with simplified structure for low-frequency applications. Journal of Computational Electronics, 15(3), 1017–1022.

    Article  Google Scholar 

  58. Sedra, A. S., et al. (1998). Microelectronic circuits. Oxford University Press.

    Google Scholar 

  59. Tellegen, B. D. H. (1948). The gyrator, a new electric network element. Philips Research Report, 3(2), 81–101.

    MathSciNet  Google Scholar 

  60. Bialko, M., & Newcomb, R. W. (1971). Generation of all finite linear circuits using the integrated DVCCS. IEEE Transactions on Circuit Theory, 18(6), 733–736.

    Article  Google Scholar 

  61. Wu, Y., Ismail, M., & Olsson, H. (2000). A novel CMOS fully differential inductorless RF bandpass filter. In 2000 IEEE international symposium on circuits and systems (ISCAS) (vol. 4, pp. 99). IEEE.

  62. Razavi, B. (2002). Design of analog CMOS integrated circuits. Tata McGraw-Hill Education.

    Google Scholar 

  63. Pipilos, S., & Tsividis, Y. (1994). RLC active filters with electronically tunable centre frequency and quality factor. Electronics Letters, 30(6), 472–474.

    Article  Google Scholar 

  64. Fabre, A., et al. (1997). Low power current-mode second-order bandpass IF filter. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 44(6), 436–446.

    Google Scholar 

  65. Duncan, R., Martin, K. W., & Sedra, A. S. (1997). A Q-enhanced active-RLC bandpass filter. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 44(5), 341–347.

    Google Scholar 

  66. Gao, Z., et al. (2005) A CMOS RF bandpass filter based on the active inductor. In 2005 6th International conference on ASIC (vol. 2). IEEE

  67. Ben Hammadi, A., et al. (2018). RF and microwave reconfigurable bandpass filter design using optimized active inductor circuit. International Journal of RF and Microwave Computer-Aided Engineering, 28(9), e21550.

    Article  Google Scholar 

  68. Yadav, R., & Tripathi, A. (2022). Machine learning theory and methods. Intelligent system algorithms and applications in science and technology (pp. 101–116). CRC Press.

    Google Scholar 

  69. Singh, D., et al. (2022). Implementation of virual instrumentation for signal acquisition and processing. In 2022 International conference on innovative computing, intelligent communication and smart electrical systems (ICSES). IEEE.

  70. Yadav, R., Parwez, Z., Parimala, R. S., Priya, U., Rathore, S. K., & Deepak, S. S. K. (2023). Analysis and prediction of future research trends in the state of industry 5.0. Resmilitaris, 13(3), 2330–2339.

    Google Scholar 

Download references

Funding

This research has not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

UB—She is the lead researcher responsible for conceiving the study and drafting the initial manuscript. She also supervised data collection and analysis. AG—He oversaw the overall research work and mainly contributed in simulations, circuit analysis and discussion sections of the manuscript. DS—She conducted an extensive literature review to provide background information and context for the study. She also reviewed and edited various sections of the manuscript and ensured consistency in writing style. All authors have read and approved the final version of the manuscript and acknowledge their respective roles in contributing to this research project.

Corresponding author

Correspondence to Urvashi Bansal.

Ethics declarations

Conflict of interest

There is no conflict of interest for publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, U., Garg, A. & Shalini, D. A Review on Recently Reported Grounded CMOS Active Inductors. Wireless Pers Commun 133, 913–949 (2023). https://doi.org/10.1007/s11277-023-10798-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10798-2

Keywords

Navigation