Skip to main content
Log in

Techniques, Answers, and Real-World UAV Implementations for Precision Farming

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In adopting state-of-the-art technologies, a domain known in time is Agriculture for fertility optimization, expense saving, assistance, and environmental safeguard. In this aspect, deploying UAVs remains a modern example in the Agriculture sector, encompassing various possibilities at ease. Concerning innovations, UAV (drone) invention remains the standard talked-about technology. UAV’s broader view includes drone ranges like micro, mini, small, and medium aerial vehicles. Initially developed applications for the military now have used assistance like firefighting, courier services, mob surveillance, facial recognition, and many more. Within the paper, UAV applications in agriculture are of primary interest, with a notable centre of attention being crop farming. This paper presents a comprehensive survey on UAV types, crop health, agricultural sensors, remote sensing with UAVs, animal marking, pesticide sprinkling, other possible agricultural use, and Precision Agriculture. We explore the approach utilized for each UAV type application and the UAV technical characteristics and payload. Beyond uses, UAV’s services and implied advantages within agriculture are further exhibited beside talks on business correlated hurdles and additional apparent difficulties limiting the broad adoption of UAVs into agriculture. The belief of the work done in the paper will prove worthwhile to Researchers working on an amalgamation of UAVs in PA. With our work, they can make a necessary spontaneous understanding of the agricultural aspect and how it should work. Those farmers attempting modernized agricultural method optimization approaches on various levels by this work benefit from new ways of using UAVs within their farming. UAV businesses exploring innovative UAV use capacities can examine the future concerning the UAV run in agriculture furthermore strengthen their endeavours within the trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712.

    Google Scholar 

  2. Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. Advances in Agronomy, 67, 1–85.

    Google Scholar 

  3. R. Raj, S. Kar, R. Nandan, A. Jagarlapudi, Precision agriculture and unmanned aerial vehicles (uavs), in: Unmanned aerial vehicle: Applications in agriculture and environment, Springer, 2020, pp. 7–23.

  4. Carolan, M. (2017). Publicising food: Big data, precision agriculture, and co-experimental techniques of addition. Sociologia Ruralis, 57(2), 135–154.

    Google Scholar 

  5. B. Pinguet, https://www.precisionag.com/in-fieldtechnologies/drones-uavs/the-role-of-drone-technology-in-sustainable-agriculture/ (May 2021). https://www.precisionag.com/in-fieldtechnologies/drones-uavs/the-role-of-drone-technology-in-sustainable-agriculture/

  6. Lillesand, T. Kiefer, R. W. Chipman, J. (2015) Remote sensing and image interpretation, John Wiley & Sons.

  7. Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (uavs). Photogrammetric Engineering & Remote Sensing, 81(4), 281–330.

    Google Scholar 

  8. Gongal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2015). Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture, 116, 8–19.

    Google Scholar 

  9. Chen, S., Laefer, D. F., & Mangina, E. (2016). State of technology review of civilian uavs. Recent Patents on Engineering, 10(3), 160–174.

    Google Scholar 

  10. Brisco, B., Brown, R., Hirose, T., McNairn, H., & Staenz, K. (1998). Precision agriculture and the role of remote sensing: A review. Canadian Journal of Remote Sensing, 24(3), 315–327.

    Google Scholar 

  11. Xue, J., Su, B. (2017) Significant remote sensing vegetation indices: A review of developments and applications, Journal of sensors 2017.

  12. Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., & Taylor, M. G. (2001). Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 45(4), 184–190.

    Google Scholar 

  13. Townshend, J. R., & Justice, C. (1986). Analysis of the dynamics of african vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 7(11), 1435–1445.

    Google Scholar 

  14. Fulton, J. P. Port, K., Shannon, D., Clay, D., Kitchen, N. (2018) Precision agriculture data management, Precision Agriculture Basics (precisionagbasics)169–188.

  15. Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37.

    Google Scholar 

  16. Suakanto, S., Engel, V. J., Hutagalung, M., Angela, D. Sensor networks data acquisition and task management for decision support of smart farming, in: 2016 International conference on information technology systems and innovation (ICITSI), IEEE, 2016, pp. 1–5.

  17. Khanna, A., & Kaur, S. (2019). Evolution of internet of things (iot) and its significant impact in the field of precision agriculture. Computers and Electronics in Agriculture, 157, 218–231.

    Google Scholar 

  18. Zamora-Izquierdo, M. A., Santa, J., Martínez, J. A., Martínez, V., & Skarmeta, A. F. (2019). Smart farming iot platform based on edge and cloud computing. Biosystems Engineering, 177, 4–17.

    Google Scholar 

  19. Giacomin, J. C., Vasconcelos, F. H. (2006) Wireless sensor network as a measurement tool in precision agriculture, in: XVIII IMEKO WORLD CONGRESS-metrology for a sustainable development, pp. 17–22.

  20. Persson, D., Andersson, J. Real-time image processing on handheld devices and uav (2016).

  21. Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782.

    Google Scholar 

  22. Trogo, R., Ebardaloza, J. B., Sabido, D. J., Bagtasa, G., Tongson, E., Balderama, O., & Sms-based smarter agriculture decision support system for yellow corn farmers in isabela, in,. (2015). IEEE Canada international humanitarian technology conference (IHTC2015). IEEE, 2015, 1–4.

  23. Tellaeche, A., Burgos Artizzu, X. P., Pajares, G., Ribeiro, A., Fernández-Quintanilla, C. (2008) A new vision-based approach to differential spraying in precision agriculture, Computers and Electronics in Agriculture, 60(2): 144–155.

  24. G. Sylvester, E-agriculture in action: Drones for agriculture, Food and Agriculture Organization of the United Nations and International, 2018.

  25. Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on uav-based applications for precision agriculture. Information, 10(11), 349.

    Google Scholar 

  26. Sugiura, R. Noguchi, N., Ishii, K., Terao, H. (2002) The development of remote sensing system using unmanned helicopter, in: Automation technology for off-road equipment proceedings of the 2002 conference, American Society of Agricultural and Biological Engineers, 2002, p. 120.

  27. Fukagawa, T., Ishii, K., Noguchi, N., Terao, H. (2003) Detecting crop growth by a multi-spectral imaging sensor, in: 2003 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 1.

  28. Xiang, H., Tian, L., (2006) Development of autonomous unmanned helicopter based agricultural remote sensing system, in: 2006 ASAE annual meeting American society of agricultural and biological engineers, 2006, 1.

  29. Yang, C., Fernandez, C. J., Everitt, J. H., (2009) Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot, in: 2009 Reno, Nevada, June 21-June 24, 2009. American society of agricultural and biological engineers, 2009, 1.

  30. Hung, C., Bryson, M., & Sukkarieh, S. (2012). Multi-class predictive template for tree crown detection. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 170–183.

    Google Scholar 

  31. Swain, K. C., Thomson, S. J., & Jayasuriya, H. P. (2010). Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE, 53(1), 21–27.

    Google Scholar 

  32. Aldana-Jague, E., Heckrath, G., Macdonald, A., van Wesemael, B., & Van Oost, K. (2016). Uas-based soil carbon mapping using vis-nir (480–1000 nm) multi-spectral imaging: Potential and limitations. Geoderma, 275, 55–66.

    Google Scholar 

  33. Huang, Y., Reddy, K. N., Fletcher, R. S., & Pennington, D. (2018). Uav low-altitude remote sensing for precision weed management. Weed Technology, 32(1), 2–6.

    Google Scholar 

  34. Di Martini, D. R., Tetila, E. C., Junior, J. M., Matsubara, E. T. Siqueira, H., de Castro Junior, A. A. Araujo, M. S. Monteiro, C. H., Pistori, H., Liesenberg, V. (2019) Machine learning applied to uav imagery in precision agriculture and forest monitoring in brazililian savanah, in: IGARSS 2019-2019 IEEE International geoscience and remote sensing symposium, IEEE, 2019, pp. 9364–9367.

  35. Costa, F. G., Ueyama, J., Braun, T., Pessin, G., Osório, F. S., Vargas, P. A. (2012) The use of unmanned aerial vehicles and wireless sensor network in agricultural applications, in: 2012IEEE international geoscience and remote sensing symposium. IEEE, 2012, 5045–5048.

  36. Arnold, T. De Biasio, M., Fritz, A., Leitner, R. (2013) Uav-based measurement of vegetation indices for environmental monitoring, in: 2013 Seventh international conference on sensing technology (ICST), IEEE, 2013, pp. 704–707.

  37. Ju, C., & Son, H. I. (2018). Multiple uav systems for agricultural applications: Control, implementation, and evaluation. Electronics, 7(9), 162.

    Google Scholar 

  38. Skobelev, P., Budaev, D., Gusev, N., Voschuk, G. (2018) Designing multi-agent swarm of uav for precise agriculture, in: International conference on practical applications of agents and multi-agent systems, Springer, pp. 47–59.

  39. De Rango, F., Potrino, G., Tropea, M., Santamaria, A. F., & Fazio, P. (2019). Scalable and ligthway bio-inspired coordination protocol for fanet in precision agriculture applications. Computers & Electrical Engineering, 74, 305–318.

    Google Scholar 

  40. Pederi, Y., Cheporniuk, H. (2015) Unmanned aerial vehicles and new technological methods of monitoring and crop protection in precision agriculture, in: IEEE International conference actual problems of unmanned aerial vehicles developments (APUAVD). IEEE, 2015, 298–301.

  41. Devraj, R., Deep, V. (2015) Expert systems for management of insect-pests in pulse crop, in: 2nd Int. conference on computing for sustainable global development (INDIACom), 2015, pp. 1144–1150.

  42. Mogili, U. R., & Deepak, B. (2018). Review on application of drone systems in precision agriculture. Procedia Computer Science, 133, 502–509.

    Google Scholar 

  43. Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., & Guizani, M. (2019). Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634.

    Google Scholar 

  44. Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X., et al. (2017). Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Frontiers in plant science, 8, 1111.

    Google Scholar 

  45. Aslan, M. F., Durdu, A., Sabanci, K., Ropelewska, E., & Gültekin, S. S. (2022). A comprehensive survey of the recent studies with uav for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3), 1047.

    Google Scholar 

  46. Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J.-G. (2021). Unmanned aerial vehicles (uav) in precision agriculture: Applications and challenges. Energies, 15(1), 217.

    Google Scholar 

  47. Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on uav characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204.

    Google Scholar 

  48. Liaghat, S., Balasundram, S. K., et al. (2010). A review: The role of remote sensing in precision agriculture. American Journal of Agricultural and Biological Sciences, 5(1), 50–55.

    Google Scholar 

  49. Tokekar, P., Vander Hook, J., Mulla, D., & Isler, V. (2016). Sensor planning for a symbiotic uav and ugv system for precision agriculture. IEEE Transactions on Robotics, 32(6), 1498–1511.

    Google Scholar 

  50. Comparetti, A. (2011) Precision agriculture: Past, present and future, in: International scientific conference AGRICULTURAL ENGINEERING AND ENVIRONMENT-2011, Aleksandras Stulginskis University, 2011, pp. 216–230.

  51. Tuyishimire, E., Bagula, A., Rekhis, S., Boudriga, N. (2017) Cooperative data muling from ground sensors to base stations using uavs, in: 2017 IEEE symposium on computers and communications (ISCC). IEEE, 2017, 35–41.

  52. Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked uavs as aerial sensor network for disaster management applications. e & i Elektrotechnik und Informationstechnik, 127(3), 56–63.

    Google Scholar 

  53. https://remotesensing.vito.be/data-products-services/using-remote-sensing-drones(2010). https://remotesensing.vito.be/data-products-services/using-remote-sensing-drones

  54. Edokossi, K., Calabia, A., Jin, S., & Molina, I. (2020). Gnss-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications. Remote Sensing, 12(4), 614.

    Google Scholar 

  55. Zhang, J., He, L., Karkee, M., Zhang, Q., Zhang, X., & Gao, Z. (2018). Branch detection for apple trees trained in fruiting wall architecture using depth features and regions-convolutional neural network (r-cnn). Computers and Electronics in Agriculture, 155, 386–393.

    Google Scholar 

  56. Yasin, J. N., Mohamed, S. A., Haghbayan, M.-H., Heikkonen, J., Tenhunen, H., & Plosila, J. (2020). Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches. IEEE access, 8, 105139–105155.

    Google Scholar 

  57. Reddy, T., RM, S. P., Parimala, M., Chowdhary, C. L., Hakak, S., & Khan, W. Z. (2020). A deep neural networks based model for uninterrupted marine environment monitoring. Computer Communications, 157, 64–75.

    Google Scholar 

  58. Matolak, D. W., Sun, R. (2014) Initial results for air-ground channel measurements & modeling for unmanned aircraft systems: Over-sea, in: (2014) IEEE aerospace conference. IEEE, 2014, 1–15.

  59. Sun, R., & Matolak, D. W. (2016). Air-ground channel characterization for unmanned aircraft systems part ii: Hilly and mountainous settings. IEEE Transactions on Vehicular Technology, 66(3), 1913–1925.

    Google Scholar 

  60. Matolak, D. W., & Sun, R. (2017). Air-ground channel characterization for unmanned aircraft systems-part iii: The suburban and near-urban environments. IEEE Transactions on Vehicular Technology, 66(8), 6607–6618.

    Google Scholar 

  61. A. Drones, B. Drones, http://www.airbornedrones.co/ (Jan 2021). http://www.airbornedrones.co/

  62. Malik, A. W., Rahman, A. U., Qayyum, T., & Ravana, S. D. (2020). Leveraging fog computing for sustainable smart farming using distributed simulation. IEEE Internet of Things Journal, 7(4), 3300–3309.

    Google Scholar 

  63. Lee, S.-W., & Mase, K. (2002). Activity and location recognition using wearable sensors. IEEE Pervasive Computing, 1(3), 24–32.

    Google Scholar 

  64. Bayrakdar, M. E. (2020). Employing sensor network based opportunistic spectrum utilization for agricultural monitoring. Sustainable Computing: Informatics and Systems, 27, 100404.

    Google Scholar 

  65. Salam, A. (2020) Internet of things in agricultural innovation and security, in: Internet of things for sustainable community development, Springer, pp. 71–112.

  66. Singh, R. K., Aernouts, M., De Meyer, M., Weyn, M., & Berkvens, R. (2020). Leveraging lorawan technology for precision agriculture in greenhouses. Sensors, 20(7), 1827.

    Google Scholar 

  67. Alvar-Beltrán, J., Fabbri, C., Verdi, L., Truschi, S., Dalla Marta, A., & Orlandini, S. (2020). Testing proximal optical sensors on quinoa growth and development. Remote Sensing, 12(12), 1958.

    Google Scholar 

  68. von Bueren, S. K., Burkart, A., Hueni, A., Rascher, U., Tuohy, M. P., & Yule, I. (2015). Deploying four optical uav-based sensors over grassland: Challenges and limitations. Biogeosciences, 12(1), 163–175.

    Google Scholar 

  69. Singh, N., & Singh, A. N. (2020). Odysseys of agriculture sensors: Current challenges and forthcoming prospects. Computers and Electronics in Agriculture, 171, 105328.

    Google Scholar 

  70. Nhamo, L., Ebrahim, G. Y., Mabhaudhi, T., Mpandeli, S., Magombeyi, M., Chitakira, M., Magidi, J., & Sibanda, M. (2020). An assessment of groundwater use in irrigated agriculture using multi-spectral remote sensing. Physics and Chemistry of the Earth, Parts A/B/C, 115, 102810.

    Google Scholar 

  71. Allred, B., Martinez, L., Fessehazion, M. K., Rouse, G., Williamson, T. N., Wishart, D., Koganti, T., Freeland, R., Eash, N., Batschelet, A., et al. (2020). Overall results and key findings on the use of uav visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes. Agricultural Water Management, 232, 106036.

    Google Scholar 

  72. Gadekallu, T. R., Rajput, D. S., Reddy, M. P. K., Lakshmanna, K. S. Bhattacharya, Singh, S., Jolfaei, A., Alazab, M. (2020) A novel pca–whale optimization-based deep neural network model for classification of tomato plant diseases using gpu, Journal of Real-Time Image Processing, 1–14.

  73. Cerro, J., Cruz Ulloa, C., & de León Rivas, J. (2021). Unmanned aerial vehicles in agriculture: A survey. Agronomy, 11(2), 203.

    Google Scholar 

  74. Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G. Alexis, K., Siegwart, R. (2016), Long-endurance sensing and mapping using a hand-launchable solar-powered uav, in: Field and Service Robotics, Springer, pp. 441–454.

  75. Czyba, R., Lemanowicz, M., Gorol, Z., Kudala, T., Construction prototyping, flight dynamics modeling, and aerodynamic analysis of hybrid vtol unmanned aircraft, Journal of Advanced Transportation 2018 (2018).

  76. Srivastava, A., & Prakash, J. (2021). Future fanet with application and enabling techniques: Anatomization and sustainability issues. Computer Science Review, 39, 100359.

    MathSciNet  Google Scholar 

  77. Wang, W., Guan, X., Wang, B., & Wang, Y. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(3), 399–413.

    Google Scholar 

  78. Bouachir, O., Abrassart, A., Garcia, F. et al (2014). A mobility model for uav ad hoc network [c] international conference on unmanned aircraft systems.

  79. Bouachir, O., Abrassart, A., Garcia, F., Larrieu, N. (2014) A mobility model for uav ad hoc network, in: 2014 International conference on unmanned aircraft systems (ICUAS). IEEE, 2014, 383–388.

  80. López, A., Jurado, J. M., Ogayar, C. J., & Feito, F. R. (2021). A framework for registering uav-based imagery for crop-tracking in precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 97, 102274.

    Google Scholar 

  81. Basiri, A., Mariani, V., Silano, G., Aatif, M., Iannelli, L., & Glielmo, L. (2022). A survey on the application of path-planning algorithms for multi-rotor uavs in precision agriculture. The Journal of Navigation, 75(2), 364–383.

    Google Scholar 

  82. Singh, P. K., & Sharma, A. (2022). An intelligent wsn-uav-based iot framework for precision agriculture application. Computers and Electrical Engineering, 100, 107912.

    Google Scholar 

  83. Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (uav) images. PloS One, 8(10), e77151.

    Google Scholar 

  84. Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M. (2013). Configuration and specifications of an unmanned aerial vehicle (uav) for early site specific weed management. PloS one, 8(3), e58210.

    Google Scholar 

  85. Lv, M., Xiao, S., Yu, T., & He, Y. (2019). Influence of uav flight speed on droplet deposition characteristics with the application of infrared thermal imaging. International Journal of Agricultural and Biological Engineering, 12(3), 10–17.

    Google Scholar 

  86. Yallappa, D., Veerangouda, M., Maski, D., Palled, V., Bheemanna, M., (2017) Development and evaluation of drone mounted sprayer for pesticide applications to crops, in: IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2017, 1–7.

  87. Hentschke, M., Pignaton de Freitas, E., Hennig, C. H., & Girardi da Veiga, I. C. (2018). Evaluation of altitude sensors for a crop spraying drone. Drones, 2(3), 25.

    Google Scholar 

  88. Xiongkui, H., Bonds, J., Herbst, A., & Langenakens, J. (2017). Recent development of unmanned aerial vehicle for plant protection in east asia. International Journal of Agricultural and Biological Engineering, 10(3), 18–30.

    Google Scholar 

  89. Guo, T., Kujirai, T., & Watanabe, T. (2012). Mapping crop status from an unmanned aerial vehicle for precision agriculture applications, ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial. Information Sciences, 39, 485–490.

    Google Scholar 

  90. Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., & Tardaguila, J. (2012). Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (uav). Irrigation Science, 30(6), 511–522.

    Google Scholar 

  91. Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22–32.

    Google Scholar 

  92. Gonzalez-Dugo, V., Zarco-Tejada, P., Nicolás, E., Nortes, P. A., Alarcón, J., Intrigliolo, D. S., & Fereres, E. (2013). Using high resolution uav thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture, 14(6), 660–678.

    Google Scholar 

  93. Yue, J., Lei, T., Li, C., & Zhu, J. (2012). The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests. Intelligent Automation & Soft Computing, 18(8), 1043–1052.

    Google Scholar 

  94. Chamoso, P., Raveane, W., Parra, V., González, A. (2014) Uavs applied to the counting and monitoring of animals, in: Ambient intelligence-software and applications, Springer, 2014, pp. 71–80.

  95. Chamoso, P., González-Briones, A., Rivas, A., Bueno De Mata, F., & Corchado, J. M. (2018). The use of drones in spain: Towards a platform for controlling uavs in urban environments. Sensors, 18(5), 1416.

    Google Scholar 

  96. Havens, K. J., Sharp, E. J. (2015) Thermal imaging techniques to survey and monitor animals in the wild: a methodology, Academic Press, 2015.

  97. Vayssade, J.-A., Arquet, R., & Bonneau, M. (2019). Automatic activity tracking of goats using drone camera. Computers and Electronics in Agriculture, 162, 767–772.

    Google Scholar 

  98. Yinka-Banjo, C., Ajayi, O. (2019) Sky-farmers: applications of unmanned aerial vehicles (uav) in agriculture, in: Autonomous Vehicles, IntechOpen, 2019, pp. 767–772.

  99. Webb, P., Mehlhorn, S. A., Smartt, P. (2017) Developing protocols for using a uav to monitor herd health, in: 2017 ASABE annual international meeting American society of agricultural and biological engineers, 1.

  100. Ma, Y. Selby, N., Adib, F. Drone relays for battery-free networks, in: Proceedings of the conference of the ACM special interest group on data communication, 2017, pp. 335–347.

  101. Nyamuryekung’e, S., Cibils, A. F., Estell, R. E., & Gonzalez, A. L. (2016). Use of an unmanned aerial vehicle- mounted video camera to assess feeding behavior of raramuri criollo cows. Rangeland ecology & management, 69(5), 386–389.

    Google Scholar 

  102. https://youtu.be/D8mXL2JapWM (Jan 2018). https://youtu.be/D8mXL2JapWM

  103. Hovhannisyan, T., Efendyan, P., & Vardanyan, M. (2018). Creation of a digital model of fields with application of dji phantom 3 drone and the opportunities of its utilization in agriculture. Annals of Agrarian Science, 16(2), 177–180.

    Google Scholar 

  104. https://uavcoach.com/drone-laws/ (2021), https://uavcoach.com/drone-laws/

  105. Prakash, S., Kumar, M., Jat, D., Jyoti, B., Subeesh, A., Agrawal, K., Tiwari, P., Mehta, C., Singh, P., Singh, K. K. (2022) Applications of drones in agriculture: Status and scope, Research Gate (2022).

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Prakash, J. Techniques, Answers, and Real-World UAV Implementations for Precision Farming. Wireless Pers Commun 131, 2715–2746 (2023). https://doi.org/10.1007/s11277-023-10577-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10577-z

Keywords

Navigation