Skip to main content
Log in

A Highly Controllable Cooperative Automatic Modulation Classification

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel highly controllable cooperative automatic modulation classification using higher order cumulants as features to increase the probability of correct classification in lower signal to noise ratios (SNR). In a cooperative framework, spatially separated sensor nodes provides a better statistical representation. Initially at the sensor nodes, higher order cumulants of the received signal are calculated and weight vector is estimated at the fusion center. Then the controllability factor is selected deterministically from the weights of the highest order cumulant in the weight vector to reduce the error in classification in lower SNRs. A soft decision fusion approach is considered in the fusion center. The Monte Carlo simulations conducted in additive white Gaussian noise and flat fading Rayleigh channels show that the proposed scheme performs better than the state-of-the-art methods for modulation classification using higher order statistics in lower SNRs. The analysis of simulation result with four modulation schemes BPSK, 4QAM, 8PSK and 16QAM in the Rayleigh flat fading channel, revealed that the proposed method achieved a 15\(\%\) improvement in classification accuracy compared to existing approaches at SNR= \(-\) 10  dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

No datasets were generated during this work.

References

  1. Swami, A., & Sadler, B. M. (2000). Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 48(3), 416–429. https://doi.org/10.1109/26.837045

    Article  Google Scholar 

  2. Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: classical approaches and new trends. IET Communications, 1(2), 137–156. https://doi.org/10.1049/iet-com:20050176

    Article  Google Scholar 

  3. Basyigit, I. B., & Dogan, H. (2020). Troubleshooting of handover problems in 900 MHz for speech quality. Wireless Personal Communication, 114, 1833–1845. https://doi.org/10.1007/s11277-020-07451-7

    Article  Google Scholar 

  4. Zhu, Z., & Nandi, A. K. (2015). Automatic modulation classification: principles, algorithms and applications. Wiley.

    Google Scholar 

  5. Abdelbar, M., Tranter, W. H., & Bose, T. (2018). Cooperative cumulants-based modulation classification in distributed networks. IEEE Transactions on Cognitive Communications and Networking, 4(3), 446–461. https://doi.org/10.1109/TCCN.2018.2824326

    Article  Google Scholar 

  6. Abdel-Moneim, M. A., El-Shafai, W., Abdel-Salam, N., & El-Rabaie, E. S. M. (2021). A survey of traditional and advanced automatic modulation classification techniques, challenges, and some novel trends. International Journal of Communication Systems. https://doi.org/10.1002/dac.4762

    Article  Google Scholar 

  7. Ali, Afan, & Yangyu, Fan. (2017). Unsupervised feature learning and automatic modulation classification using deep learning model. Physical Communication, 25, 75–84. https://doi.org/10.1016/j.phycom.2017.09.004

    Article  Google Scholar 

  8. Satija, U., Ramkumar, B., & Manikandan, M. S. (2017). A novel sparse classifier for automatic modulation classification using cyclostationary features. Wireless Personal Communication, 96, 4895–4917. https://doi.org/10.1007/s11277-017-4435-5

    Article  Google Scholar 

  9. Yan, X., Rao, X., Wang, Q., Wu, H.-C., Zhang, Y., & Wu, Y. (2021). Novel cooperative automatic modulation classification using unmanned aerial vehicles. IEEE Sensors Journal, 21(24), 28107–28117. https://doi.org/10.1109/JSEN.2021.3123048

    Article  Google Scholar 

  10. Sun, Y., & Ball, E. A. (2022). Automatic modulation classification using techniques from image classification. IET Communications, 16(11), 1303–1314. https://doi.org/10.1049/cmu2.12335

    Article  Google Scholar 

  11. Ghauri, S. A., Qureshi, I. M., & Malik, A. N. (2017). A novel approach for automatic modulation classification via hidden Markov models and Gabor features. Wireless Personal Communication, 96, 4199–4216. https://doi.org/10.1007/s11277-017-4378-x

    Article  Google Scholar 

  12. Coruk, R. B., Gokdogan, B. Y., Benzaghta, M., et al. (2022). On the classification of modulation schemes using higher order statistics and support vector machines. Wireless Personal Communication. https://doi.org/10.1007/s11277-022-09795-8

    Article  Google Scholar 

  13. Kumar, Y., Jajoo, G., Kumar, A., et al. (2022). Blind signal modulation classification using constellation pattern analysis with oversampling factor alteration. Wireless Personal Communication, 125, 559–576. https://doi.org/10.1007/s11277-022-09564-7

    Article  Google Scholar 

  14. Hou, C., Li, Y., Chen, X., & Zhang, J. (2021). Automatic modulation classification using KELM with joint features of CNN and LBP. Physical Communication, 45, 101259. https://doi.org/10.1016/j.phycom.2020.101259

    Article  Google Scholar 

  15. Rahim V.C.A., & Prema, C. (2022). Performance analysis of cooperative automatic modulation classification using higher order statistics, In 2022 National Conference on Communications (NCC), Mumbai, India, pp. 136-141, https://doi.org/10.1109/NCC55593.2022.9806816.

  16. Thameur, H. B., Dayoub, I., & Hamouda, W. (2022). USRP RIO-based testbed for real-time blind digital modulation recognition in MIMO systems. IEEE Communications Letters, 26(10), 2500–2504. https://doi.org/10.1109/LCOMM.2022.3191787

    Article  Google Scholar 

  17. Li, T., Li, Y., & Dobre, O. A. (2021). Modulation classification based on fourth-order cumulants of superposed signal in NOMA systems. IEEE Transactions on Information Forensics and Security, 16, 2885–2897. https://doi.org/10.1109/TIFS.2021.3068006

    Article  Google Scholar 

  18. Yan, X., Rao, X., Wang, Q., Wu, H.-C., Zhang, Y., & Wu, Y. (2021). Novel cooperative automatic modulation classification using unmanned aerial vehicles. IEEE Sensors Journal, 21(24), 28107–28117. https://doi.org/10.1109/JSEN.2021.3123048

    Article  Google Scholar 

  19. Sanderson, J., Li, X., Liu, Z., & Wu, Z. (2013). Hierarchical blind modulation classification for underwater acoustic communication signal via cyclostationary and maximal likelihood analysis, In MILCOM 2013–2013 IEEE Military Communications Conference, San Diego, CA, USA, pp. 29-34, https://doi.org/10.1109/MILCOM.2013.14.

  20. Kharbech, S., Dayoub, I., Zwingelstein-Colin, M., & Simon, E. P. (2018). Blind digital modulation identification for MIMO systems in railway environments with high-speed channels and impulsive noise. IEEE Transactions on Vehicular Technology, 67(8), 7370–7379. https://doi.org/10.1109/TVT.2018.2834869

    Article  Google Scholar 

  21. Ma, X., Liu, D., & Shan, Y. (2017). Intra-pulse modulation recognition using short-time Ramanujan Fourier transform spectrogram. EURASIP Journal on Advances in Signal Processing, 2017, 42. https://doi.org/10.1186/s13634-017-0469-9

    Article  Google Scholar 

  22. Huang, Y., Jin, W., Li, B., Ge, P., & Wu, Y. (2019). Automatic modulation recognition of radar signals based on Manhattan distance-based features. IEEE Access, 7, 41193–41204. https://doi.org/10.1109/ACCESS.2019.2907159

    Article  Google Scholar 

  23. Tayakout, H., Dayoub, I., Ghanem, K., & Bousbia-Salah, H. (2018). Automatic modulation classification for D-STBC cooperative relaying networks. IEEE Wireless Communications Letters, 7(5), 780–783. https://doi.org/10.1109/LWC.2018.2824813

    Article  Google Scholar 

  24. Yao, X., Yang, H., & Sheng, M. (2023). Automatic modulation classification for underwater acoustic communication signals based on deep complex networks. Entropy, 25(2), 318. https://doi.org/10.3390/e25020318

    Article  Google Scholar 

  25. Wang, Y., Liu, M., Yang, J., & Gui, G. (2019). Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Transactions on Vehicular Technology, 68(4), 4074–4077. https://doi.org/10.1109/TVT.2019.2900460

    Article  Google Scholar 

  26. Zhang, H., Nie, R., Lin, M., et al. (2021). A deep learning based algorithm with multi-level feature extraction for automatic modulation recognition. Wireless Networks, 27, 4665–4676. https://doi.org/10.1007/s11276-021-02758-0

    Article  Google Scholar 

  27. An, Z., et al. (2022). Series-constellation feature based blind modulation recognition for beyond 5G MIMO-OFDM systems with channel fading. IEEE Transactions on Cognitive Communications and Networking, 8(2), 793–811. https://doi.org/10.1109/TCCN.2022.3164880

    Article  Google Scholar 

  28. Zhang, T., Shuai, C., & Zhou, Y. (2020). Deep learning for robust automatic modulation recognition method for IoT applications. IEEE Access, 8, 117689–117697. https://doi.org/10.1109/ACCESS.2020.2981130

    Article  Google Scholar 

  29. Yan, X., Zhang, Y., Rao, X., Wang, Q., Wu, H.-C., & Wu, Y. (2022). Novel cooperative automatic modulation classification using vectorized soft decision fusion for wireless sensor networks. Sensors, 22(5), 1797. https://doi.org/10.3390/s22051797

    Article  Google Scholar 

  30. Clement, J. C., Indira, N., Vijayakumar, P., et al. (2021). Deep learning based modulation classification for 5G and beyond wireless systems. Peer-to-Peer Networking and Applications, 14, 319–332. https://doi.org/10.1007/s12083-020-01003-3

    Article  Google Scholar 

  31. Abdelmutalab, Ameen, Assaleh, Khaled, & El-Tarhuni, Mohamed. (2016). Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers. Physical Communication, 21, 10–18. https://doi.org/10.1016/j.phycom.2016.08.001

    Article  Google Scholar 

  32. Chang, D.-C., & Shih, P.-K. (2015). Cumulants-based modulation classification technique in multipath fading channels. IET Communications, 9, 828–835. https://doi.org/10.1049/iet-com.2014.0773

    Article  Google Scholar 

  33. Markovic, G.B., & Dukic, M.L. (2012). Cooperative AMC schemes using cumulants with hard and soft decision fusion, In 2012 20th Telecommunications Forum (TELFOR), pp. 400-403, https://doi.org/10.1109/TELFOR.2012.6419231.

  34. Hameed, F., Dobre, O. A., & Popescu, D. C. (2009). On the likelihood-based approach to modulation classification. IEEE Transactions on Wireless Communications, 8(12), 5884–5892. https://doi.org/10.1109/TWC.2009.12.080883

    Article  Google Scholar 

  35. Roy, Q., Zhang, F., & Vogel, D. (2019). Automation accuracy is good, but high controllability may be better, In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). Association for Computing Machinery, New York, NY, USA, 520, pp. 1–8. https://doi.org/10.1145/3290605.3300750

Download references

Funding

The authors declare that no funds were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. C. Abdul Rahim.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahim, V.C.A., Prema, S.C. A Highly Controllable Cooperative Automatic Modulation Classification. Wireless Pers Commun 131, 2081–2092 (2023). https://doi.org/10.1007/s11277-023-10533-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10533-x

Keywords

Navigation