Skip to main content

Advertisement

Log in

NOMA-ARQ Scheme: A Gateway for Efficient Performance of the Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the present scenario, with a rapidly growing demand for wireless data, it is time to improve the data rate for a wireless network. "NOMA-ARQ Network" known as "Non-Orthogonal Multiple Access—Automatic Repeat reQuest Network”, is one of the solutions for achieving very low ultra-reliable low latency in network performance. The existing OMA systems require fixed time/frequency synchronization, which is very difficult to meet in practice. In this paper, we propose a comparison between OMA and NOMA. The overall system throughput is evaluated as a function of the number of information bits, channels used, and power. The throughput and outage probability are evaluated as a function of the number of information bits and various block lengths. The performance of the system is analysed in terms of reliability and throughput with the help of the type-1 ARQ protocol. While increasing the number of retransmissions, the reliability of the system gets boosted, thereby reducing the outage probability of reception of an error. Throughout the entire system, the performance of NOMA is found to be better than the OMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Code Availability on reasonable request.

References

  1. Assaf, T., Al-Dweik, A. J., El Moursi, M. S., Zeineldin, H., & Al-Jarrah, M. (2020). Exact bit error-rate analysis of two-user NOMA using QAM with arbitrary modulation orders. IEEE Communication Letter, 24(12), 2705–2709.

    Article  Google Scholar 

  2. Assaf, T., Al-Dweik, A., El Moursi, M., & Zeineldin, H. (2019). Exact BER performance analysis for downlink NOMA systems over Nakagami-$m$ fading channels. IEEE Access, 7, 134539–134555. https://doi.org/10.1109/ACCESS.2019.2942113

    Article  Google Scholar 

  3. Mukhtar, H., Al-Dweik, A., Al-Mualla, M., & Shami, A. (2013). Adaptive hybrid ARQ system using turbo product codes with hard/soft decoding. IEEE Communication Letter, 17(11), 2132–2135. https://doi.org/10.1109/LCOMM.2013.092813.131480

    Article  Google Scholar 

  4. Mukhtar, H., Al-Dweik, A., & Al-Mualla, M. (2014). CRC-free hybrid ARQ system using turbo product codes. IEEE Transactions Communication, 62(12), 4220–4229. https://doi.org/10.1109/TCOMM.2014.2366753

    Article  Google Scholar 

  5. Mukhtar, H., Al-Dweik, A., Al-Mualla, M., & Shami, A. (2015). Low complexity power optimization algorithm for multimedia transmission over wireless networks. IEEE Journal of Selected Topics Signal Processing, 9(1), 113–124. https://doi.org/10.1109/JSTSP.2014.2331915

    Article  Google Scholar 

  6. Naveen, S. S., Choudhury, S. R. R., & Nelakuditi, S. (2010). Successive interference cancellation: A back-of-the-envelope perspective. IEEE Monterey.

    Google Scholar 

  7. Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195. https://doi.org/10.1109/JSAC.2017.2725519

    Article  Google Scholar 

  8. Akyildiz, I. F., Gutierrez-Estevez, D. M., Balakrishnan, R., & Chavarria-Reyes, E. (2014). LTE-Advanced and the evolution to Beyond 4G (B4G) systems. Physical Communication, 10, 31–60. https://doi.org/10.1016/j.phycom.2013.11.009

    Article  Google Scholar 

  9. Mohammadian, Z., Dehghani, M. J., & Eslami, M. (2020). Efficient resource allocation algorithms for high energy efficiency with fairness among users in OFDMA networks. Engineering Science and Technology, an International Journal, 23(5), 982–988. https://doi.org/10.1016/j.jestch.2020.01.003

    Article  Google Scholar 

  10. Salehi, F., Neda, N., & Majidi, M.-H. (2020). Max-min fairness in downlink non-orthogonal multiple access with short packet communications. AEU - International Journal of Electronics and Communications, 114, 153028. https://doi.org/10.1016/j.aeue.2019.153028

    Article  Google Scholar 

  11. Zhang, Z., et al. (2017). Downlink and uplink non-orthogonal multiple access in a dense wireless network. IEEE Journal on Selected Areas in Communications, 35(12), 2771–2784. https://doi.org/10.1109/JSAC.2017.2724646

    Article  Google Scholar 

  12. Satrya, G. B., & Shin, S. Y. (2019). Enhancing security of SIC algorithm on non-orthogonal multiple access (NOMA) based systems. Physical Communication, 33, 16–25. https://doi.org/10.1016/j.phycom.2018.12.010

    Article  Google Scholar 

  13. YuryPolyanskiy, H., Poor, V., & Verdú, S. (2020). Channel coding rate in the finite blocklength. Regime, 56(5), 2307–2357.

    MathSciNet  MATH  Google Scholar 

  14. Dosti, E., Shehab, M., Alves, H., & Latva-aho, M. (2019). On the performance of non-orthogonal multiple access in the finite blocklength regime. Ad Hoc Networks, 84, 148–157. https://doi.org/10.1016/j.adhoc.2018.10.001

    Article  Google Scholar 

  15. Murti, F. W., Siregar, R. F., & Shin, S. Y. (2018). SU-MIMO based uplink non-orthogonal multiple access for 5G. Journal of Network and Computer Applications, 110, 87–96. https://doi.org/10.1016/j.jnca.2018.03.009

    Article  Google Scholar 

  16. Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access, 4, 2123–2129. https://doi.org/10.1109/ACCESS.2016.2563462

    Article  Google Scholar 

  17. Larsson, P., Rasmussen, L. K., Skoglund, S. (2014). Analysis of rate optimized throughput for large-scale MIMO-(H) ARQ schemes. In 2014 IEEE global communications conference.

  18. Hoang, T. M., Nguyen, B. C., Trung, T. T., & Dung, L. T. (2020). Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels. Heliyon, 6(11), e05440. https://doi.org/10.1016/j.heliyon.2020.e05440

    Article  Google Scholar 

  19. Shirani-Mehr, H., Papadopoulos, H., Ramprashad, S. A., & Caire, G. (2011). Joint scheduling and ARQ for MU-MIMO downlink in the presence of inter-cell interference. IEEE Transactions on Communications, 59(2), 578–589. https://doi.org/10.1109/TCOMM.2010.112310.100013

    Article  Google Scholar 

  20. Bouteggui, M., Merazka, F., & Kurt, G. K. (2020). Effective capacity of two way relay channels under retransmission schemes. AEU - International Journal of Electronics and Communications, 124, 153321. https://doi.org/10.1016/j.aeue.2020.153321

    Article  Google Scholar 

  21. Noura, H. N., Melki, R., & Chehab, A. (2021). Efficient data confidentiality scheme for 5G wireless NOMA communications. Journal of Information Security and Applications, 58, 102781. https://doi.org/10.1016/j.jisa.2021.102781

    Article  Google Scholar 

  22. Yang, W., Durisi, G., & Koch, T. (2014). Quasi-static multiple-antenna fading channels at finite blocklength. IEEE, 60(7), 4232–4265.

    MathSciNet  MATH  Google Scholar 

  23. Liu, Y., Zhijin Qin, M., Elkashlan, A. N., Ding, Z., Nallanathan, A., et al. (2017). Non-orthogonal multiple access for 5G and beyond. Proceeding of IEEE, 105(12), 2347–2381. https://doi.org/10.1109/JPRO.2017.2768666

    Article  Google Scholar 

  24. Dixit, V., & Kumar, A. (2021). An exact BER analysis of NOMA-VLC system with imperfect SIC and CSI. AEU - International Journal of Electronics and Communications, 138, 153864. https://doi.org/10.1016/j.aeue.2021.153864

    Article  Google Scholar 

  25. Trabelsi, A. D., et al. (2020). Dynamic scheduling algorithm based on NOMA access and priority assignment for V2X communications. IFAC-PapersOnLine, 53(2), 15041–15046.

    Article  Google Scholar 

  26. Anh, L. T., & Kong, H. Y. (2021). Multi-User PD-NOMA with unreliable backhaul links in a multiple EH relay network over Nakagami-m fading channels. Physical Communication, 47, 101351. https://doi.org/10.1016/j.phycom.2021.101351

    Article  Google Scholar 

  27. Goldsmith, A. (2005). Wireless communications. Cambridge University Press. https://doi.org/10.1017/CBO9780511841224

    Book  Google Scholar 

  28. AdliMehr, K., MuseviNiya, J., Seyedarabi, H., & KhoshabiNobar, S. (2020). Secrecy capacity results for a secure NOMA-based cognitive radio network with an external eavesdropper. Physical Communication, 43, 101224. https://doi.org/10.1016/j.phycom.2020.101224

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MR—Literature review, Experimental work, Conceptualization, Methodology, Drafting the manuscript. YB—Reviewing, and Manuscript editing.

Corresponding author

Correspondence to Mancharla Ravi.

Ethics declarations

Conflicts of interest

Author Declare we have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, M., Bulo, Y. NOMA-ARQ Scheme: A Gateway for Efficient Performance of the Network. Wireless Pers Commun 132, 1–15 (2023). https://doi.org/10.1007/s11277-023-10481-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10481-6

Keywords

Navigation