Skip to main content

Advertisement

Log in

Dynamic Clustering and RRH Selection in Non-coherent Ultra-Dense CRAN with Limited Fronthaul Capacity

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this study, We aim to design a Dynamic Clustering scheme to maximize the Weighted Sum Rate in Ultra-Dense Cloud Radio Access Network (UD-CRAN) where mm-Wave fronthaul links with limited capacity is deployed. To improve the network performance in terms of users’ data rate, The Non-Coherent Joint Transmission is considered which is the superior transmission strategy in the limited fronthaul capacity regime. The Dynamic Clustering is proposed, which has the potential to optimize RRH selection and form a sparse beamforming vector for each user. In this study, we investigate and analyze the closed-form expressions of users’ data rate and use the \(l_1\ norm\) to approximate the non-convex fronthaul capacity constraint as a convex weighted power constraint. then, We developed a modified Successive Convex approximation-based algorithm to solve the complicated optimization problem. Our simulation results indicate that in UD-CRAN with mm-Wave fronthaul links, the proposed Dynamic Clustering improve the performance of the system significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

Code Availability

The code that support the findings of this study are available on request from the corresponding author.

References

  1. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What will 5g be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  2. Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., & Dittmann, L. (2015). Cloud ran for mobile networks-a technology overview. IEEE Communications Surveys & Tutorials, 17(1), 405–426.

    Article  Google Scholar 

  3. Peng, M., Sun, Y., Li, X., Mao, Z., & Wang, C. (2016). Recent advances in cloud radio access networks: System architectures, key techniques, and open issues. IEEE Communications Surveys & Tutorials, 18(3), 2282–2308.

    Article  Google Scholar 

  4. Shi, Y., Zhang, J., Letaief, K. B., Bai, B., & Chen, W. (2015). Large-scale convex optimization for ultra-dense cloud-ran. IEEE Wireless Communications, 22(3), 84–91.

    Article  Google Scholar 

  5. Pan, C., Elkashlan, M., Wang, J., Yuan, J., & Hanzo, L. (2018). User-centric c-ran architecture for ultra-dense 5g networks: Challenges and methodologies. IEEE Communications Magazine, 56(6), 14–20.

    Article  Google Scholar 

  6. Chen, S., Qin, F., Hu, B., Li, X., & Chen, Z. (2016). User-centric ultra-dense networks for 5g: Challenges methodologies and directions. IEEE Wireless Communication Magazine, 23(2), 78–85.

    Article  Google Scholar 

  7. Pan, C., Mehrpouyan, H., Liu, Y., Elkashlan, M., & Nallanathan, A. (2018). Joint pilot allocation and robust transmission design for ultra-dense user-centric tdd c-ran with imperfect csi. IEEE Trans. Wireless Communication, 17(3), 2038–2053.

    Article  Google Scholar 

  8. Pan, C., Ren, H., Elkashlan, M., Nallanathan, A., & Hanzo, L. (2019). Weighted sum-rate maximization for the ultra-dense user-centric tdd c-ran downlink relying on imperfect csi. IEEE Transactions on Wireless Communications, 18(2), 1182–1198.

    Article  Google Scholar 

  9. Stephen, R. G., & Zhang, R. (2017). Joint millimeter-wave fronthaul and ofdma resource allocation in ultra-dense cran. IEEE Transaction Communication, 65(3), 1411–1423.

    Article  Google Scholar 

  10. Tanbourgi, R., Singh, S., Andrews, J. G., & Jondral, F. K. (2014). A tractable model for noncoherent joint-transmission base station cooperation. IEEE Transactions on Wireless Communications, 13(9), 4959–4973.

    Article  Google Scholar 

  11. Pan, C., Elkashlan, M., Nallanathan, A., & Hanzo, L. (2018). The non-coherent ultra-dense c-ran is capable of outperforming its coherent counterpart at a limited fronthaul capacity. IEEE Journal on Selected Areas in Communications, 36(11), 2549–2560.

    Article  Google Scholar 

  12. Shi, Y., Zhang, J., & Letaief, K. B. (2014). Group sparse beamforming for green cloud-ran. IEEE Transactions on Wireless Communications, 13(5), 2809–2823.

    Article  Google Scholar 

  13. Farahmand, M., & Mohammadi, A. (2017). Sparse power allocation in joint downlink transmission of cloud radio access networks. IET Communications, 11(16), 2531–2538.

    Article  Google Scholar 

  14. Baracca, P., Boccardi, F., & Benvenuto, N. (2014). A dynamic clustering algorithm for downlink comp systems with multiple antenna ues. EURASIP Journal of Wireless Communication Network, 125, 1–14.

    Google Scholar 

  15. Dai, B., & Yu, W. (2014). Sparse beamforming and user-centric clustering for downlink cloud radio access network. IEEE Access, 2, 1326–1339.

    Article  Google Scholar 

  16. Awais, M., Ahmed, A., Naeem, M., Iqbal, M., Ejaz, W., Anpalagan, A., & Kim, H. S. (2017). Efficient joint user association and resource allocation for cloud radio access network. IEEE Access, 5, 1439–1448.

    Article  Google Scholar 

  17. Shi, Q., Razaviyayn, M., Luo, Z.-Q., & He, C. (2017). An iteratively weighted mmse approach to distributed sum-utility maximization for a mimo interfering broadcast channel. IEEE Access, 5, 1439–1448.

    MATH  Google Scholar 

  18. Tran, L.-N., Hanif, M. F., Tolli, A., & Juntti, M. (2012). Fast converging algorithm for weighted sum rate maximization in multicell miso downlink. IEEE Signal Processing Letters, 19(12), 872–875.

    Article  Google Scholar 

  19. Chen, Z., Hou, X., & Yang, C. (2016). Training resource allocation for user-centric base station cooperation networks. IEEE Transactions on Vehicular Technology, 65(5), 2729–2735.

    Article  Google Scholar 

  20. Kailath, T., Sayed, A. H., & Hassibi, B. (Eds.). (2000). Linear estimations. Prentice-Hall.

    Google Scholar 

  21. Tse, D., & Viswanath, P. (Eds.). (2005). Fundamentals wireless communication. Cambridge Univ. Press.

    MATH  Google Scholar 

  22. Boyd, S., & Vandenberghe, L. (Eds.). (2004). Convex optimization. Cambridge Univ. Press.

    MATH  Google Scholar 

  23. Björnson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user mimo systems is massive mimo the answer. IEEE Transaction Wireless Communication, 14(6), 3059–3075.

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The authors are with the Electrical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

Corresponding author

Correspondence to Alireza M. Hosseini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, A.M., Mohammadi, A. Dynamic Clustering and RRH Selection in Non-coherent Ultra-Dense CRAN with Limited Fronthaul Capacity. Wireless Pers Commun 131, 1131–1148 (2023). https://doi.org/10.1007/s11277-023-10473-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10473-6

Keywords

Navigation