Skip to main content
Log in

Low Complexity and Low Memory Compression Algorithm for Hyperspectral Image Sensors

Wireless Personal Communications Aims and scope Submit manuscript

Cite this article

Abstract

The 3D-zero memory set partitioned embedded block (3D-ZM-SPECK) is an embedded and memory-efficient compression algorithm. Through, the 3D-ZM-SPECK does not require any coding memory, but testing of the sets for each bit-plane increases the complexity significantly which led a big constrain for the low resource HS image sensors. The proposed HS image compression algorithm is the low complexity solution of 3D-ZM-SPECK which reduces the recursive significance test of sets. Simulation results demonstrate that the proposed 3D-M-ZM-SPECK significantly reduces the complexity by ~ 25% with the other state of art HS image compression algorithms. Thus, it is a viable option for the HS image sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Chutia, D., Bhattacharyya, D. K., Sarma, K. K., Kalita, R., & Sudhakar, S. (2016). Hyperspectral remote sensing classifications: A perspective survey. Transactions in GIS., 20(4), 463–490. https://doi.org/10.1111/tgis.12164

    Article  Google Scholar 

  2. Verma, B., Prasad, R., Srivastava, P. K., Yadav, S. A., Singh, P., & Singh, R. K. (2022). Investigation of optimal vegetation indices for retrieval of leaf chlorophyll and leaf area index using enhanced learning algorithms. Computers and Electronics in Agriculture., 192, 106581. https://doi.org/10.1016/j.compag.2021.106581

    Article  Google Scholar 

  3. Siddiqui, A., Chauhan, P., Kumar, V., Jain, G., Deshmukh, A., & Kumar, P. (2022). Characterization of urban materials in AVIRIS-NG data using a mixture tuned matched filtering (MTMF) approach. Geocarto International., 37(1), 332–347.

    Article  Google Scholar 

  4. Patel, A. K., Ghosh, J. K., & Sayyad, S. U. (2022). Fractional abundances study of macronutrients in soil using hyperspectral remote sensing. Geocarto International., 37(2), 474–493.

    Article  Google Scholar 

  5. Constans, Y., Fabre, S., Seymour, M., Crombez, V., Deville, Y., & Briottet, X. (2022). Hyperspectral pansharpening in the reflective domain with a second panchromatic channel in the SWIR II spectral domain. Remote Sensing., 14(1), 113. https://doi.org/10.3390/rs14010113

    Article  Google Scholar 

  6. Li, H., Zhou, B., Xu, F., & Wei, Z. (2022). Hyperspectral characterization and chlorophyll content inversion of reclaimed vegetation in rare earth mines. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16772-4

    Article  Google Scholar 

  7. Yoon, J. (2022). Hyperspectral imaging for clinical applications. BioChip Journal. https://doi.org/10.1007/s13206-021-00041-0

    Article  Google Scholar 

  8. Bajpai S, Singh HV, Kidwai NR (2017) Feature extraction & classification of hyperspectral images using singular spectrum analysis & multinomial logistic regression classifiers. In: IEEE international conference on multimedia, signal processing and communication technologies (IMPACT) Aligarh, India. (pp 97–100). doi: https://doi.org/10.1109/MSPCT.2017.8363982

  9. Pande, S., & Banerjee, B. (2022). HyperLoopNet: Hyperspectral image classification using multiscale self-looping convolutional networks. ISPRS Journal of Photogrammetry and Remote Sensing., 183, 422–438. https://doi.org/10.1016/j.isprsjprs.2021.11.021

    Article  Google Scholar 

  10. Jha, S. S., Nidamanuri, R. R., & Ientilucci, E. J. (2022). Influence of atmospheric modeling on spectral target detection through forward modeling approach in multi-platform remote sensing data. ISPRS Journal of Photogrammetry and Remote Sensing., 183, 286–306. https://doi.org/10.1016/j.isprsjprs.2021.11.011

    Article  Google Scholar 

  11. Yaman, D., Kumar, V., & Singh, R. S. (2021). Parallel lossless HSI compression based on RLS filter. Journal of Parallel and Distributed Computing., 150, 60–68. https://doi.org/10.1016/j.jpdc.2020.12.004

    Article  Google Scholar 

  12. Zhuang, L., & Bioucas-Dias, J. M. (2018). Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing., 11(3), 730–742. https://doi.org/10.1109/JSTARS.2018.2796570

    Article  Google Scholar 

  13. Sneha, Kaul A (2022) A fundamental review on hyperspectral segmentation algorithms. In Applications of Networks, Sensors and Autonomous Systems Analytics Springer, Singapore. (pp 165–185). doi: https://doi.org/10.1007/978-981-16-7305-4_17.

  14. Bajpai, S., Singh, H. V., & Kidwai, N. R. (2019). 3D modified wavelet block tree coding for hyperspectral images. Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)., 15(2), 1001–1008. https://doi.org/10.11591/ijeecs.v15.i2.pp1001-1008

    Article  Google Scholar 

  15. Yaman, Dua, Kumar, Vinod, & Singh, Ravi Shankar. (2020). Comprehensive review of hyperspectral image compression algorithms. Optical Engineering., 59(9), 090902. https://doi.org/10.1117/1.OE.59.9.090902

    Article  Google Scholar 

  16. Licciardi, G. A. (2020). Hyperspectral compression. In Data Handling in Science and Technology., 32, 55–67. https://doi.org/10.1016/B978-0-444-63977-6.00004-3

    Article  Google Scholar 

  17. Mishra, M. K., Gupta, A., John, J., Shukla, B. P., Dennison, P., Srivastava, S. S., Kaushik, N. K., Misra, A., & Dhar, D. (2019). Retrieval of atmospheric parameters and data-processing algorithms for AVIRIS-NG Indian campaign data. Current Science., 116(7), 1089–1100. https://doi.org/10.18520/cs/v116/i7/1089-1100

    Article  Google Scholar 

  18. Sharma, D., Prajapati, Y. K., & Tripathi, R. (2018). Spectrally efficient 155 Tb/s Nyquist- WDM superchannel with mixed line rate approach using 2775 Gbaud PM-QPSK and PM-16QAM. Optical Engineering., 57(7), 076102. https://doi.org/10.1117/1.OE.57.7.076102

    Article  Google Scholar 

  19. Sharma, D., Prajapati, Y. K., & Tripathi, R. (2020). Success journey of coherent PM-QPSK technique with its variants: A survey. IETE Technical Review., 37(1), 36–55.

    Article  Google Scholar 

  20. Suresh, Kumar R., & Manimegalai, P. (2019). Near lossless image compression using parallel fractal texture identification. Biomedical Signal Processing and Control., 58, 101862. https://doi.org/10.1016/j.bspc.2020.101862

    Article  Google Scholar 

  21. Valsesia, D., & Magli, E. (2017). Fast and lightweight rate control for onboard predictive coding of hyperspectral images. IEEE Geoscience and Remote Sensing Letters., 14(3), 394–398. https://doi.org/10.1109/LGRS.2016.2644726

    Article  Google Scholar 

  22. Christophe, E., Mailhes, C., & Duhamel, P. (2008). Hyperspectral image compression: Adapting SPIHT and EZW to anisotropic 3-D wavelet coding. IEEE Transactions on Image Processing., 17(12), 2334–2346. https://doi.org/10.1109/TIP.2008.2005824

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, X., Tao, J., Shen, Y., Qin, M., & Song, C. (2018). Distributed source coding of hyperspectral images based on three-dimensional wavelet. Journal Indian Society Remote Sensing, 46(4), 667–673. https://doi.org/10.1007/s12524-017-0735-1

    Article  Google Scholar 

  24. Xu, K., Liu, B., Nian, Y., He, M., & Wan, J. (2017). Distributed lossy compression for hyperspectral images based on multilevel coset codes. International Journal of Wavelets, Multiresolution and Information Processing., 15(02), 1750012. https://doi.org/10.1142/S0219691317500126

    Article  MathSciNet  MATH  Google Scholar 

  25. Das, S. (2021). Hyperspectral image, video compression using sparse tucker tensor decomposition. IET Image Processing., 15(4), 964–973. https://doi.org/10.1049/ipr2.12077

    Article  Google Scholar 

  26. Sujitha, B., Parvathy, V. S., Laxmi Lydia, E., Rani, P., Polkowski, Z., & Shankar, K. (2021). Optimal deep learning based image compression technique for data transmission on industrial Internet of things applications. Transactions on Emerging Telecommunications Technologies., 32(7), e3976. https://doi.org/10.1002/ett.3976

    Article  Google Scholar 

  27. Yaman, Dua, Singh, Ravi Shankar, Parwani, Kshitij, Lunagariya, Smit, & Kumar, Vinod. (2021). Convolution neural network based Lossy compression of hyperspectral images. Signal Processing: Image Communication., 95, 116255. https://doi.org/10.1016/j.image.2021.116255

    Article  Google Scholar 

  28. Wang, L., Bai, J., Wu, J., & Jeon, G. (2015). Hyperspectral image compression based on lapped transform and Tucker decomposition. Signal Processing: Image Communication., 36, 63–69. https://doi.org/10.1016/j.image.2015.06.002

    Article  Google Scholar 

  29. Bilgin, A., Zweig, G., & Marcellin, M. W. (2000). Three-dimensional image compression with integer wavelet transforms. Applied Optics., 39(11), 1799–1814. https://doi.org/10.1364/AO.39.001799

    Article  Google Scholar 

  30. Das, A., Hazra, A., & Banerjee, S. (2009). An efficient architecture for 3-D discrete wavelet transform. IEEE Transactions on Circuits and Systems for Video Technology., 20(2), 286–296. https://doi.org/10.1109/TCSVT.2009.2031551

    Article  Google Scholar 

  31. Tang, X., & Pearlman, W. A. (2004). Lossy-to-lossless block-based compression of hyperspectral volumetric data. IEEE International Conference on Image Processing, Singapore., 5, 3283–3286. https://doi.org/10.1109/ICIP.2004.1421815

    Article  Google Scholar 

  32. Tang X, Pearlman WA (2006) Three-dimensional wavelet-based compression of hyperspectral images. In: Hyperspectral Data Compression Springer, Boston, MA. pp 273–308. doi: https://doi.org/10.1007/0-387-28600-4_10

  33. Bajpai, S., Singh, H. V., & Kidwai, N. R. (2019). 3D wavelet block tree coding for hyperspectral images. International Journal of Innovative Technology and Exploring Engineering., 8(6C), 64–68.

    Google Scholar 

  34. Ngadiran R, Boussakta S, Sharif B, Bouridane A (2010) Efficient implementation of 3D listless SPECK. IEEE international conference on computer and communication engineering. (pp 1–4). doi :10.1109/ ICCCE.2010.5556843.

  35. Sudha, V. K., & Sudhakar, R. (2013). 3D listless embedded block coding algorithm for compression of volumetric medical images. Journal of Scientific & Industrial Research, 72, 735–748.

    Google Scholar 

  36. Bajpai, S., Kidwai, N. R., Singh, H. V., & Singh, A. K. (2019). Low memory block tree coding for hyperspectral images. Multimedia Tools and Applications., 78(19), 27193–27209. https://doi.org/10.1007/s11042-019-07797-6

    Article  Google Scholar 

  37. Bajpai, S., Kidwai, N. R., Singh, H. V., & Singh, A. K. (2022). A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding. Multimedia Tools and Applications., 81(1), 841–872. https://doi.org/10.1007/s11042-021-11456-0

    Article  Google Scholar 

  38. Li, R., Pan, Z., & Wang, Y. (2019). The linear prediction vector quantization for hyperspectral image compression. Multimedia Tools and Applications., 78(9), 11701–11718. https://doi.org/10.1007/s11042-018-6724-8

    Article  Google Scholar 

  39. Báscones, D., González, C., & Mozos, D. (2020). An FPGA accelerator for realtime lossy compression of hyperspectral images. Remote Sensing., 12(16), 2563. https://doi.org/10.3390/rs12162563

    Article  Google Scholar 

  40. Jiang, Z., Pan, W. D., & Shen, H. (2020). Spatially and spectrally concatenated neural networks for efficient lossless compression of hyperspectral imagery. Journal of Imaging., 6(6), 38. https://doi.org/10.3390/jimaging6060038

    Article  Google Scholar 

  41. Mohan, B. K., & Porwal, A. (2015). Hyperspectral image processing and analysis. Current Science., 108(5), 833–841.

    Google Scholar 

  42. Altamimi, A., & Ben Youssef, B. (2022). A systematic review of hardware-accelerated compression of remotely sensed hyperspectral images. Sensors., 22(1), 263. https://doi.org/10.3390/s22010263

    Article  Google Scholar 

  43. Meraj, Y., Khan, E. (2021) Modified ZM-SPECK: A low complexity and low memory wavelet image coder for VS/IoT Nodes. In 2021 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 494–500). IEEE. doi : https://doi.org/10.1109/ESCI50559.2021.9396834.

  44. Meraj, Y., Khan, E. (2021). A Block Based Parallel ZM-SPECK Algorithm. In 2021 8th International Conference on Smart Computing and Communications (ICSCC) (pp. 198–203). IEEE. doi: https://doi.org/10.1109/ICSCC51209.2021.9528101.

  45. Bajpai, S. (2022). Low complexity block tree coding for hyperspectral image sensors. Multimedia Tools and Applications., 81(23), 33205–33323. https://doi.org/10.1007/s11042-022-13057-x

    Article  Google Scholar 

  46. Arqub, O. A. (2018). Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. International Journal of Numerical Methods for Heat & Fluid Flow, 28(4), 828–856. https://doi.org/10.1108/HFF-07-2016-0278

    Article  Google Scholar 

  47. Abu Arqub, O. (2020). Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. International Journal of Numerical Methods for Heat & Fluid Flow, 30(11), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394

    Article  Google Scholar 

  48. Bajpai, S. (2023). Low complexity image coding technique for hyperspectral image sensors. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-14738-x

    Article  Google Scholar 

  49. Bajpai, S., Sharma, D., Alam, M., Chandel, V. S., Pandey, A. K., & Tripathi, S. L. (2023). Curvelet transform based compression algorithm for low resource hyperspectral image sensors. Journal of Electrical and Computer Engineering. https://doi.org/10.1155/2023/8961271

    Article  Google Scholar 

  50. Chandra, H., Bajpai, S. (2022). Listless block cube tree coding for low resource hyperspectral image compression sensors. In 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT) (pp. 1–5). IEEE. doi: https://doi.org/10.1109/IMPACT55510.2022.10029076

  51. Arqub, O. A., & Al-Smadi, M. (2020). Numerical solutions of Riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm. Journal of Porous Media. https://doi.org/10.1615/JPorMedia.2020025011

    Article  Google Scholar 

  52. Garg, G., & Kumar, R. (2022). Analysis of image types, compression techniques and performance assessment metrics: A review. Journal of Information and Optimization Sciences, 43(3), 429–436.

    Article  MathSciNet  Google Scholar 

  53. Mohanty, B., & Sahoo, T. (2022). Mutual information based objective model for assessment of visual quality. Journal of Information and Optimization Sciences, 43(5), 1151–1166.

    Article  Google Scholar 

  54. Bhardwaj, R. (2022). An improved reversible data hiding method in encrypted domain for E-healthcare. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-022-13905-w

    Article  Google Scholar 

  55. Nadia, Z., Lahdir, M., & Helbert, D. (2019). Support vector regression based 3D-wavelet texture learning for hyperspectral image compression. The Visual Computer., 36(7), 1473–1490. https://doi.org/10.1007/s00371-019-01753-z

    Article  Google Scholar 

  56. Setiadi, D. R. I. M. (2021). PSNR vs SSIM: Imperceptibility quality assessment for image steganography. Multimedia Tools and Applications, 80(6), 8423–8444. https://doi.org/10.1007/s11042-020-10035-z

    Article  Google Scholar 

  57. Ramakrishnan, D., & Bharti, R. (2015). Hyperspectral remote sensing and geological applications. Current Science, 108(5), 879–891.

    Google Scholar 

Download references

Acknowledgements

I am sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the paper. The author wants to express his gratitude to Integral University, Lucknow, Uttar Pradesh, India for providing manuscript number IU/R&D/2023-MCN0001887 for the present research work.

Funding

The author received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrish Bajpai.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, S. Low Complexity and Low Memory Compression Algorithm for Hyperspectral Image Sensors. Wireless Pers Commun 131, 805–833 (2023). https://doi.org/10.1007/s11277-023-10455-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10455-8

Keywords

Navigation