Abstract
The 3D-zero memory set partitioned embedded block (3D-ZM-SPECK) is an embedded and memory-efficient compression algorithm. Through, the 3D-ZM-SPECK does not require any coding memory, but testing of the sets for each bit-plane increases the complexity significantly which led a big constrain for the low resource HS image sensors. The proposed HS image compression algorithm is the low complexity solution of 3D-ZM-SPECK which reduces the recursive significance test of sets. Simulation results demonstrate that the proposed 3D-M-ZM-SPECK significantly reduces the complexity by ~ 25% with the other state of art HS image compression algorithms. Thus, it is a viable option for the HS image sensors.
This is a preview of subscription content,
to check access.
Data Availability
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Chutia, D., Bhattacharyya, D. K., Sarma, K. K., Kalita, R., & Sudhakar, S. (2016). Hyperspectral remote sensing classifications: A perspective survey. Transactions in GIS., 20(4), 463–490. https://doi.org/10.1111/tgis.12164
Verma, B., Prasad, R., Srivastava, P. K., Yadav, S. A., Singh, P., & Singh, R. K. (2022). Investigation of optimal vegetation indices for retrieval of leaf chlorophyll and leaf area index using enhanced learning algorithms. Computers and Electronics in Agriculture., 192, 106581. https://doi.org/10.1016/j.compag.2021.106581
Siddiqui, A., Chauhan, P., Kumar, V., Jain, G., Deshmukh, A., & Kumar, P. (2022). Characterization of urban materials in AVIRIS-NG data using a mixture tuned matched filtering (MTMF) approach. Geocarto International., 37(1), 332–347.
Patel, A. K., Ghosh, J. K., & Sayyad, S. U. (2022). Fractional abundances study of macronutrients in soil using hyperspectral remote sensing. Geocarto International., 37(2), 474–493.
Constans, Y., Fabre, S., Seymour, M., Crombez, V., Deville, Y., & Briottet, X. (2022). Hyperspectral pansharpening in the reflective domain with a second panchromatic channel in the SWIR II spectral domain. Remote Sensing., 14(1), 113. https://doi.org/10.3390/rs14010113
Li, H., Zhou, B., Xu, F., & Wei, Z. (2022). Hyperspectral characterization and chlorophyll content inversion of reclaimed vegetation in rare earth mines. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16772-4
Yoon, J. (2022). Hyperspectral imaging for clinical applications. BioChip Journal. https://doi.org/10.1007/s13206-021-00041-0
Bajpai S, Singh HV, Kidwai NR (2017) Feature extraction & classification of hyperspectral images using singular spectrum analysis & multinomial logistic regression classifiers. In: IEEE international conference on multimedia, signal processing and communication technologies (IMPACT) Aligarh, India. (pp 97–100). doi: https://doi.org/10.1109/MSPCT.2017.8363982
Pande, S., & Banerjee, B. (2022). HyperLoopNet: Hyperspectral image classification using multiscale self-looping convolutional networks. ISPRS Journal of Photogrammetry and Remote Sensing., 183, 422–438. https://doi.org/10.1016/j.isprsjprs.2021.11.021
Jha, S. S., Nidamanuri, R. R., & Ientilucci, E. J. (2022). Influence of atmospheric modeling on spectral target detection through forward modeling approach in multi-platform remote sensing data. ISPRS Journal of Photogrammetry and Remote Sensing., 183, 286–306. https://doi.org/10.1016/j.isprsjprs.2021.11.011
Yaman, D., Kumar, V., & Singh, R. S. (2021). Parallel lossless HSI compression based on RLS filter. Journal of Parallel and Distributed Computing., 150, 60–68. https://doi.org/10.1016/j.jpdc.2020.12.004
Zhuang, L., & Bioucas-Dias, J. M. (2018). Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing., 11(3), 730–742. https://doi.org/10.1109/JSTARS.2018.2796570
Sneha, Kaul A (2022) A fundamental review on hyperspectral segmentation algorithms. In Applications of Networks, Sensors and Autonomous Systems Analytics Springer, Singapore. (pp 165–185). doi: https://doi.org/10.1007/978-981-16-7305-4_17.
Bajpai, S., Singh, H. V., & Kidwai, N. R. (2019). 3D modified wavelet block tree coding for hyperspectral images. Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)., 15(2), 1001–1008. https://doi.org/10.11591/ijeecs.v15.i2.pp1001-1008
Yaman, Dua, Kumar, Vinod, & Singh, Ravi Shankar. (2020). Comprehensive review of hyperspectral image compression algorithms. Optical Engineering., 59(9), 090902. https://doi.org/10.1117/1.OE.59.9.090902
Licciardi, G. A. (2020). Hyperspectral compression. In Data Handling in Science and Technology., 32, 55–67. https://doi.org/10.1016/B978-0-444-63977-6.00004-3
Mishra, M. K., Gupta, A., John, J., Shukla, B. P., Dennison, P., Srivastava, S. S., Kaushik, N. K., Misra, A., & Dhar, D. (2019). Retrieval of atmospheric parameters and data-processing algorithms for AVIRIS-NG Indian campaign data. Current Science., 116(7), 1089–1100. https://doi.org/10.18520/cs/v116/i7/1089-1100
Sharma, D., Prajapati, Y. K., & Tripathi, R. (2018). Spectrally efficient 155 Tb/s Nyquist- WDM superchannel with mixed line rate approach using 2775 Gbaud PM-QPSK and PM-16QAM. Optical Engineering., 57(7), 076102. https://doi.org/10.1117/1.OE.57.7.076102
Sharma, D., Prajapati, Y. K., & Tripathi, R. (2020). Success journey of coherent PM-QPSK technique with its variants: A survey. IETE Technical Review., 37(1), 36–55.
Suresh, Kumar R., & Manimegalai, P. (2019). Near lossless image compression using parallel fractal texture identification. Biomedical Signal Processing and Control., 58, 101862. https://doi.org/10.1016/j.bspc.2020.101862
Valsesia, D., & Magli, E. (2017). Fast and lightweight rate control for onboard predictive coding of hyperspectral images. IEEE Geoscience and Remote Sensing Letters., 14(3), 394–398. https://doi.org/10.1109/LGRS.2016.2644726
Christophe, E., Mailhes, C., & Duhamel, P. (2008). Hyperspectral image compression: Adapting SPIHT and EZW to anisotropic 3-D wavelet coding. IEEE Transactions on Image Processing., 17(12), 2334–2346. https://doi.org/10.1109/TIP.2008.2005824
Wang, X., Tao, J., Shen, Y., Qin, M., & Song, C. (2018). Distributed source coding of hyperspectral images based on three-dimensional wavelet. Journal Indian Society Remote Sensing, 46(4), 667–673. https://doi.org/10.1007/s12524-017-0735-1
Xu, K., Liu, B., Nian, Y., He, M., & Wan, J. (2017). Distributed lossy compression for hyperspectral images based on multilevel coset codes. International Journal of Wavelets, Multiresolution and Information Processing., 15(02), 1750012. https://doi.org/10.1142/S0219691317500126
Das, S. (2021). Hyperspectral image, video compression using sparse tucker tensor decomposition. IET Image Processing., 15(4), 964–973. https://doi.org/10.1049/ipr2.12077
Sujitha, B., Parvathy, V. S., Laxmi Lydia, E., Rani, P., Polkowski, Z., & Shankar, K. (2021). Optimal deep learning based image compression technique for data transmission on industrial Internet of things applications. Transactions on Emerging Telecommunications Technologies., 32(7), e3976. https://doi.org/10.1002/ett.3976
Yaman, Dua, Singh, Ravi Shankar, Parwani, Kshitij, Lunagariya, Smit, & Kumar, Vinod. (2021). Convolution neural network based Lossy compression of hyperspectral images. Signal Processing: Image Communication., 95, 116255. https://doi.org/10.1016/j.image.2021.116255
Wang, L., Bai, J., Wu, J., & Jeon, G. (2015). Hyperspectral image compression based on lapped transform and Tucker decomposition. Signal Processing: Image Communication., 36, 63–69. https://doi.org/10.1016/j.image.2015.06.002
Bilgin, A., Zweig, G., & Marcellin, M. W. (2000). Three-dimensional image compression with integer wavelet transforms. Applied Optics., 39(11), 1799–1814. https://doi.org/10.1364/AO.39.001799
Das, A., Hazra, A., & Banerjee, S. (2009). An efficient architecture for 3-D discrete wavelet transform. IEEE Transactions on Circuits and Systems for Video Technology., 20(2), 286–296. https://doi.org/10.1109/TCSVT.2009.2031551
Tang, X., & Pearlman, W. A. (2004). Lossy-to-lossless block-based compression of hyperspectral volumetric data. IEEE International Conference on Image Processing, Singapore., 5, 3283–3286. https://doi.org/10.1109/ICIP.2004.1421815
Tang X, Pearlman WA (2006) Three-dimensional wavelet-based compression of hyperspectral images. In: Hyperspectral Data Compression Springer, Boston, MA. pp 273–308. doi: https://doi.org/10.1007/0-387-28600-4_10
Bajpai, S., Singh, H. V., & Kidwai, N. R. (2019). 3D wavelet block tree coding for hyperspectral images. International Journal of Innovative Technology and Exploring Engineering., 8(6C), 64–68.
Ngadiran R, Boussakta S, Sharif B, Bouridane A (2010) Efficient implementation of 3D listless SPECK. IEEE international conference on computer and communication engineering. (pp 1–4). doi :10.1109/ ICCCE.2010.5556843.
Sudha, V. K., & Sudhakar, R. (2013). 3D listless embedded block coding algorithm for compression of volumetric medical images. Journal of Scientific & Industrial Research, 72, 735–748.
Bajpai, S., Kidwai, N. R., Singh, H. V., & Singh, A. K. (2019). Low memory block tree coding for hyperspectral images. Multimedia Tools and Applications., 78(19), 27193–27209. https://doi.org/10.1007/s11042-019-07797-6
Bajpai, S., Kidwai, N. R., Singh, H. V., & Singh, A. K. (2022). A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding. Multimedia Tools and Applications., 81(1), 841–872. https://doi.org/10.1007/s11042-021-11456-0
Li, R., Pan, Z., & Wang, Y. (2019). The linear prediction vector quantization for hyperspectral image compression. Multimedia Tools and Applications., 78(9), 11701–11718. https://doi.org/10.1007/s11042-018-6724-8
Báscones, D., González, C., & Mozos, D. (2020). An FPGA accelerator for realtime lossy compression of hyperspectral images. Remote Sensing., 12(16), 2563. https://doi.org/10.3390/rs12162563
Jiang, Z., Pan, W. D., & Shen, H. (2020). Spatially and spectrally concatenated neural networks for efficient lossless compression of hyperspectral imagery. Journal of Imaging., 6(6), 38. https://doi.org/10.3390/jimaging6060038
Mohan, B. K., & Porwal, A. (2015). Hyperspectral image processing and analysis. Current Science., 108(5), 833–841.
Altamimi, A., & Ben Youssef, B. (2022). A systematic review of hardware-accelerated compression of remotely sensed hyperspectral images. Sensors., 22(1), 263. https://doi.org/10.3390/s22010263
Meraj, Y., Khan, E. (2021) Modified ZM-SPECK: A low complexity and low memory wavelet image coder for VS/IoT Nodes. In 2021 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 494–500). IEEE. doi : https://doi.org/10.1109/ESCI50559.2021.9396834.
Meraj, Y., Khan, E. (2021). A Block Based Parallel ZM-SPECK Algorithm. In 2021 8th International Conference on Smart Computing and Communications (ICSCC) (pp. 198–203). IEEE. doi: https://doi.org/10.1109/ICSCC51209.2021.9528101.
Bajpai, S. (2022). Low complexity block tree coding for hyperspectral image sensors. Multimedia Tools and Applications., 81(23), 33205–33323. https://doi.org/10.1007/s11042-022-13057-x
Arqub, O. A. (2018). Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. International Journal of Numerical Methods for Heat & Fluid Flow, 28(4), 828–856. https://doi.org/10.1108/HFF-07-2016-0278
Abu Arqub, O. (2020). Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. International Journal of Numerical Methods for Heat & Fluid Flow, 30(11), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394
Bajpai, S. (2023). Low complexity image coding technique for hyperspectral image sensors. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-14738-x
Bajpai, S., Sharma, D., Alam, M., Chandel, V. S., Pandey, A. K., & Tripathi, S. L. (2023). Curvelet transform based compression algorithm for low resource hyperspectral image sensors. Journal of Electrical and Computer Engineering. https://doi.org/10.1155/2023/8961271
Chandra, H., Bajpai, S. (2022). Listless block cube tree coding for low resource hyperspectral image compression sensors. In 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT) (pp. 1–5). IEEE. doi: https://doi.org/10.1109/IMPACT55510.2022.10029076
Arqub, O. A., & Al-Smadi, M. (2020). Numerical solutions of Riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm. Journal of Porous Media. https://doi.org/10.1615/JPorMedia.2020025011
Garg, G., & Kumar, R. (2022). Analysis of image types, compression techniques and performance assessment metrics: A review. Journal of Information and Optimization Sciences, 43(3), 429–436.
Mohanty, B., & Sahoo, T. (2022). Mutual information based objective model for assessment of visual quality. Journal of Information and Optimization Sciences, 43(5), 1151–1166.
Bhardwaj, R. (2022). An improved reversible data hiding method in encrypted domain for E-healthcare. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-022-13905-w
Nadia, Z., Lahdir, M., & Helbert, D. (2019). Support vector regression based 3D-wavelet texture learning for hyperspectral image compression. The Visual Computer., 36(7), 1473–1490. https://doi.org/10.1007/s00371-019-01753-z
Setiadi, D. R. I. M. (2021). PSNR vs SSIM: Imperceptibility quality assessment for image steganography. Multimedia Tools and Applications, 80(6), 8423–8444. https://doi.org/10.1007/s11042-020-10035-z
Ramakrishnan, D., & Bharti, R. (2015). Hyperspectral remote sensing and geological applications. Current Science, 108(5), 879–891.
Acknowledgements
I am sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the paper. The author wants to express his gratitude to Integral University, Lucknow, Uttar Pradesh, India for providing manuscript number IU/R&D/2023-MCN0001887 for the present research work.
Funding
The author received no financial support for the research, authorship, and/or publication of this article.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares that there are no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bajpai, S. Low Complexity and Low Memory Compression Algorithm for Hyperspectral Image Sensors. Wireless Pers Commun 131, 805–833 (2023). https://doi.org/10.1007/s11277-023-10455-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-023-10455-8