Skip to main content
Log in

Critical Comparative Analysis and Recommendation in MAC Protocols for Wireless Mesh Networks Using Multi-objective Optimization and Statistical Testing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless Mesh Network (WMN) is surely one of the prominent networks in the modern era which is widely used in numerous evolving applications, viz. broadband home networking (BHN), community and neighbourhood networks (CNN), coordinated network management (CNM), and intelligent transportation systems (ITS), etc. It is a wireless network (WN) with multi-hop formed by many fixed wireless mesh routers (WMR) that are connected wirelessly with a mesh-alike backbone arrangement. In the IEEE 802.11 s network, the node selection, scalability, stability, density of the nodes, mobility of the nodes, transmission power, and routing are major issues that WMN suffers. In this paper, a critical review of MAC protocols and their Quality of Service (QoS) parameters for WMN is presented to attain a better understanding of MAC protocols. Furthermore, the critical comparative analysis and recommendation of MAC procedures for WMN using Multi-objective optimization and statistical testing framework are performed. This framework is used for the analysis and recommendation of different protocols available for QoS parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code availability

Not applicable.

References

  1. Gore, A. D., & Karandikar, A. (2011). Link scheduling algorithms for wireless mesh networks. IEEE Communications Surveys & Tutorials., 13, 258.

    Article  Google Scholar 

  2. Zhang, H., Wu, S., Zhang, C,, Krishnamoorthy, S. (2021). Optimal distribution in wireless mesh network with enhanced connectivity and coverage. in advances in intelligent systems and computing. pp 1117–1128

  3. Goldberg, B. S., Hall, J. E., Pham, P. K., & Cho, C. S. (2021). Text messages by wireless mesh network vs voice by two-way radio in disaster simulations: A crossover randomized-controlled trial. Am J Emerg Med., 1, 48.

    Google Scholar 

  4. Rao, AN., Babu, PR., Reddy, AR. (2021). Analysis of wireless mesh networks in machine learning approaches. in proceedings of international conference on advances in computer engineering and communication systems. pp 321–331

  5. Rajendran, R., et al. (2021). An optimal strategy to countermeasure the impersonation attack in wireless mesh network. Int J Inf Technol, 1–6, 1033.

    Google Scholar 

  6. Nsaif, SA., Park. SY., Rhee. JM., (2021). SRAD: A novel approach to seamless routing for wireless Ad Hoc Networks. in 2021 23rd International conference on advanced communication technology (ICACT). pp 172–175

  7. Hosseinabadi, G., Vaidya, N., (2013) Token-DCF: An opportunistic MAC protocol for wireless networks

  8. Marina, M. K., Das, S. R., & Subramanian, A. P. (2010). A topology control approach for utilizing multiple channels in multi-radio wireless mesh networks. Comput Networks, 54, 241–256. https://doi.org/10.1016/j.comnet.2009.05.015

    Article  MATH  Google Scholar 

  9. Bharghavan, V., Demers, A., Shenker, S., & Zhang, L. (1994). Macaw. ACM SIGCOMM. Comput Commun Rev, 24, 212–225. https://doi.org/10.1145/190809.190334

    Article  Google Scholar 

  10. Cooper, M., & Goldburg, M. (1996). Intelligent antennas: Spatial division multiple access. Annu Rev Commun, 4, 2–13.

    Google Scholar 

  11. Lal ,D., Toshniwal, R., Radhakrishnan, R., et al (2002). A novel MAC layer protocol for space division multiple access in wireless ad hoc networks

  12. Ramanathan, R. (2005). Antenna beamforming and power control for ad hoc networks. Mob Ad Hoc Netw. https://doi.org/10.1002/0471656895.ch5

    Article  Google Scholar 

  13. Lal, D., Jain, V., Zeng, Q. A., & Agrawal, D. P. (2004). Performance evaluation of medium access control for multiple-beam antenna nodes in a wireless LAN. IEEE Transactions on Parallel and Distributed Systems, 15, 1117–1129. https://doi.org/10.1109/TPDS.2004.84

    Article  Google Scholar 

  14. Sundaresan, K., Anantharaman, V., Hsieh, H-Y., Sivakumar, R. (2003). ATP. in Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing - MobiHoc ’03. ACM Press, New York, USA, p 64

  15. Sundaresan K, Sivakumar R (2004). A unified MAC layer framework for ad-hoc networks with smart antennas. in Proceedings of the international symposium on mobile Ad Hoc networking and computing (MobiHoc). association for computing machinery, pp 244–255

  16. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Comput Networks, 47, 445–487. https://doi.org/10.1016/j.comnet.2004.12.001

    Article  MATH  Google Scholar 

  17. Choi, Y.-S., Alamouti, S. M., & Tarokh, V. (2006). Complementary beamforming: New approaches. IEEE Transactions on Communications, 54, 41–50. https://doi.org/10.1109/TCOMM.2005.861674

    Article  Google Scholar 

  18. Wang, G., & Xiao, P. (2017). Li W (2017) A novel MAC protocol for wireless network using multi-beam directional antennas. Int Conf Comput Netw Commun ICNC, 2017, 36–40. https://doi.org/10.1109/ICCNC.2017.7876098

    Article  Google Scholar 

  19. Choudhury, RR., Yang, X., Ramanathan, R., Vaidya, NH. (2002). Using directional antennas for medium access control in ad hoc networks. in Proceedings of the annual international conference on mobile computing and networking, MOBICOM. association for computing machinery (ACM), pp 59–70

  20. Gossain, H., Cordeiro, C., Cavalcanti, D., & Agrawal, D. P. (2004). The deafness problems and solutions in wireless ad hoc networks using directional antennas. GLOBECOM - IEEE Glob Telecommun Conf. https://doi.org/10.1109/glocomw.2004.1417558

    Article  Google Scholar 

  21. Takata, M., Bandai, M., Watanabe, T. (2007). A MAC protocol with directional antennas for deafness avoidance in ad hoc networks

  22. Choudhury, RR., Vaidya, NH. (2004). Deafness: A MAC problem in ad hoc networks when using directional antennas

  23. Jain, V., Gupta, A., & Agrawal, D. P. (2008). On-demand medium access in multihop wireless networks with multiple beam smart antennas. IEEE Transactions on Parallel and Distributed Systems, 19, 489–502. https://doi.org/10.1109/TPDS.2007.70739

    Article  Google Scholar 

  24. Shihab, E., Cai, L., & Pan, J. (2009). A distributed asynchronous directional-to-directional MAC protocol for wireless ad hoc networks. IEEE Transactions on Vehicular Technology, 58, 5124–5134. https://doi.org/10.1109/TVT.2009.2024085

    Article  Google Scholar 

  25. Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7, 810–836. https://doi.org/10.1016/j.adhoc.2009.01.001

    Article  Google Scholar 

  26. Conti, M., & Giordano, S. (2007). Multihop ad hoc networking: The reality. IEEE Communications Magazine, 45, 88–95. https://doi.org/10.1109/MCOM.2007.343617

    Article  Google Scholar 

  27. Tang, J., Hincapié, R., Xue, G., et al. (2010). Fair bandwidth allocation in wireless mesh networks with cognitive radios. IEEE Transactions on Vehicular Technology, 59, 1487–1496. https://doi.org/10.1109/TVT.2009.2038478

    Article  Google Scholar 

  28. Liu, T., & Liao, W. (2010). Multicast routing in multi-radio multi-channel wireless mesh networks. IEEE Transactions on Wireless Communications, 9, 3031–3039. https://doi.org/10.1109/TWC.2010.082310.090568

    Article  Google Scholar 

  29. Wang, P., & Bohacek, S. (2011). Practical computation of optimal schedules in multihop wireless networks. IEEE/ACM Transactions on Networking., 19, 305.

    Article  Google Scholar 

  30. Kim, K. H., & Shin, K. G. (2011). Self-reconfigurable wireless mesh networks. IEEE/ACM Trans Netw, 19, 393–404. https://doi.org/10.1109/TNET.2010.2096431

    Article  Google Scholar 

  31. Liu, E., Zhang, Q., & Leung, K. K. (2011). Clique-based utility maximization in wireless mesh networks. IEEE Transactions on Wireless Communications, 10, 948–957. https://doi.org/10.1109/TWC.2011.011111.100790

    Article  Google Scholar 

  32. Hiertz, G., Mingozzi. E., Serrano P (2011). Workshop MeshTech 2011 Enabling Technologies and Standards for Wireless Mesh Networking. 2011

  33. Carrano, R. C., Magalhães, L. C. S., Saade, D. C. M., & Albuquerque, C. V. N. (2011). IEEE 802.11s multihop MAC: A tutorial. IEEE Commun Surv Tutorials, 13, 52–67. https://doi.org/10.1109/SURV.2011.040210.00037

    Article  Google Scholar 

  34. Huang, Y., Yang, X., Yang, S., et al. (2011). A cross-layer approach handling link asymmetry for wireless mesh access networks. IEEE Transactions on Vehicular Technology, 60, 1045–1058. https://doi.org/10.1109/TVT.2011.2106172

    Article  Google Scholar 

  35. Aziz, A., Starobinski, D., & Thiran, P. (2011). Understanding and tackling the root causes of instability in wireless mesh networks. IEEE/ACM Transactions on Networking., 19, 1178.

    Article  Google Scholar 

  36. Bazan, O., & Jaseemuddin, M. (2012). A survey on MAC protocols for wireless adhoc networks with beamforming antennas. IEEE Commun Surv Tutorials, 14, 216–239. https://doi.org/10.1109/SURV.2011.041311.00099

    Article  Google Scholar 

  37. Chou, Z. T., Huang, C. Q., & Chang, J. M. (2014). QoS provisioning for wireless LANs with multi-beam access point. IEEE Transactions on Mobile Computing, 13, 2113–2127. https://doi.org/10.1109/TMC.2013.85

    Article  Google Scholar 

  38. Babich, F., Comisso, M., Crismani, A., & Dorni, A. (2015). On the design of MAC protocols for multi-packet communication in IEEE 802.11 heterogeneous networks using adaptive antenna arrays. IEEE Transactions on Mobile Computing, 14, 2332–2348. https://doi.org/10.1109/TMC.2014.2385058

    Article  Google Scholar 

  39. Kuperman, G., Margolies, R., Jones, NM., et al (2016). Uncoordinated MAC for adaptive multi-beam directional networks: analysis and evaluation

  40. Wang, Y., Wu, Y., Wang, Y., et al. (2017). Antioxidant properties of probiotic bacteria. Nutrients. https://doi.org/10.3390/nu9050521

    Article  Google Scholar 

  41. Hong, W., Jiang, Z. H., Yu, C., et al. (2017). Multibeam Antenna Technologies for 5G Wireless Communications. IEEE Transactions on Antennas and Propagation, 65, 6231–6249. https://doi.org/10.1109/TAP.2017.2712819

    Article  Google Scholar 

  42. Medjo Me Biomo, J. D., Kunz, T., & St-Hilaire, M. (2018). Exploiting Multi-Beam Antennas for End-to-End Delay Reduction in Ad Hoc Networks. Mob Networks Appl, 23, 1293–1305. https://doi.org/10.1007/s11036-018-1037-8

    Article  Google Scholar 

  43. Proulx, B., Madiedo, J., Jones, NM., Kuperman, G. (2018). Topology control in aerial multi-beam directional networks

  44. Subramanian, A. P., Gupta, H., Das, S. R., & Cao, J. (2008). Minimum interference channel assignment in multiradio wireless mesh networks. IEEE Transactions on Mobile Computing, 7, 1459–1473. https://doi.org/10.1109/TMC.2008.70

    Article  Google Scholar 

  45. Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Comput Math with Appl, 57, 1756–1766. https://doi.org/10.1016/j.camwa.2008.10.036

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, F., & Bai, Y. (2012). An overview of topology control mechanisms in multi-radio multi-channel wireless mesh networks. EURASIP Journal on Wireless Communications and Networking, 2012, 324. https://doi.org/10.1186/1687-1499-2012-324

    Article  Google Scholar 

  47. Lin, J. W., & Lin, S. M. (2014). A weight-aware channel assignment algorithm for mobile multicast in wireless mesh networks. Journal of Systems and Software, 94, 98–107. https://doi.org/10.1016/j.jss.2014.03.040

    Article  Google Scholar 

  48. Franklin, A. A., Bukkapatanam, V., & Murthy, C. S. R. (2011). On the end-to-end flow allocation and channel assignment in multi-channel multi-radio wireless mesh networks with partially overlapped channels q. Computer Communications, 34, 1858–1869. https://doi.org/10.1016/j.comcom.2011.05.006

    Article  Google Scholar 

  49. Avallone, S., & Di, S. G. (2013). An experimental study of the channel switching cost in multi-radio wireless mesh networks. IEEE Communications Magazine, 51, 124–134. https://doi.org/10.1109/MCOM.2013.6588661

    Article  Google Scholar 

  50. Thenral, B., & Thirunadana Sikamani, K. (2015). AMRA: Angle based multicast routing algorithm for wireless mesh networks. Indian J Sci Technol., 8, 974.

    Article  Google Scholar 

  51. Bao, L., Garcia-Luna-Aceves, JJ., (2002). Transmission scheduling in ad hoc networks with directional antennas. in Proceedings of the annual international conference on mobile computing and networking, MOBICOM. association for computing machinery (ACM), pp 48–58

  52. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. New York, USA: John Wiley Sons.

    MATH  Google Scholar 

  53. Goldberg, D. E., & Holland, J. H. (1988). Genetic Algorithms and Machine Learning. Machine Learning, 3, 95–99. https://doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  54. Rangaiah, GP., (2009) Multi-objective optimization: techniques and applications in chemical engineering (Advances in process systems engineering)

  55. Kumar, M., & Guria, C. (2017). The elitist non-dominated sorting genetic algorithm with inheritance (i-NSGA-II) and its jumping gene adaptations for multi-objective optimization. Inf Sci (Ny). https://doi.org/10.1016/j.ins.2016.12.003

    Article  Google Scholar 

  56. Sohn, W., & Hong, E. (2021). Monte Carlo simulation for verification of nonparametric tests used in final status surveys of MARSSIM at decommissioning of nuclear facilities. Nuclear Engineering and Technology, 53, 1664–1675.

    Article  Google Scholar 

  57. Trivedi, V., Prakash, S., & Ramteke, M. (2017). Optimized on-line control of MMA polymerization using fast multi-objective DE. Materials and Manufacturing Processes, 32, 1144–1151.

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AS, SS; Shiv Prakash; Methodology: AS, SS, SP; Formal analysis and investigation: AS, SS, SP; Writing–original draft preparation: AS, SS; Writing–review and editing: SS, SP; Resources: AS, SS, SP; Supervision: SS, SP.

Corresponding author

Correspondence to Sudhakar Singh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, S. & Prakash, S. Critical Comparative Analysis and Recommendation in MAC Protocols for Wireless Mesh Networks Using Multi-objective Optimization and Statistical Testing. Wireless Pers Commun 129, 2319–2344 (2023). https://doi.org/10.1007/s11277-023-10228-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10228-3

Keywords

Navigation