Skip to main content
Log in

Interpretation and Investigations of Topology Based Routing Protocols Applied in Dynamic System of VANET

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The intelligent transportation system is necessary for smart connection among vehicles and roadways equipment. Vehicular Ad-hoc Network (VANET) where vehicles are linked together through a wireless link is an emerging research area and gaining attention for this smart connection where each vehicle is a node in the ad-hoc network consists of groups of stationary or moving vehicles. This dynamic system of VANET provides an infrastructure that builds new solution for safety and comfort but this implementation presents a hurdle in the selection and designing of a routing protocol which is capable of providing reliable and efficient transportation of packets. The prior objective of this research is to select and suggest reliable routing protocol and gives a performance assessment of the topology based protocol’s properties in terms of high-density dynamic systems of vehicles i.e., Ad Hoc on-Demand Distance Vector (AODV), Optimized Link State Routing Protocol, Dynamic Source Routing (DSR), and Destination-Sequenced Distance-Vector on the grounds of simulation parameters (packet delivery ratio (PDR), overhead (OH), throughput ratio (TR)). The performance is evaluated using network simulator and mobility simulator the Simulation of Urban Mobility. The result shows that in case of TR and OH, protocol DSR outperforms but in case of PDR, protocol AODV outperforms. From the above, conclusion is that this research will assist the researchers in selecting the better routing protocol in the implementation of dynamic system of VANET infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

V-2-V:

Vehicle-to-vehicle

V-2-I:

Vehicle-to-infrastructure

OBU:

On-board unit

KPI:

Key performance indicators

RSU:

Road side units

DSRC:

Dedicated short range communication

QoS:

Quality of service

MAC:

Media access control

PDR:

Packet delivery ratio

EED:

End-to-end delay

OH:

Overhead

TR:

Throughput ratio

SUMO:

Simulation of urban mobility

NS-2:

Network simulator-2

NS-3:

Network simulator-3

TCL:

Tool command language

GUI:

Graphic user interface

OLSR:

Optimized link state routing protocol

DSDV:

Destination-sequenced distance-vector

AODV:

Ad hoc on-demand distance vector

DSR:

Dynamic source routing

VANET:

Vehicle ad-hoc network

DTN:

Delay tolerant network

GPS:

Global positioning system

MANET:

Mobile ad-hoc network

XML:

Extensible markup language

ITS:

Intelligent transportation systems

IoT:

Internet of things

References

  1. Raissi, K., & Ben Gouissem, B. (2021). Hybrid communication architecture in VANETs via named data network. International Journal of Communication Systems, 34(11), e4848.

    Article  Google Scholar 

  2. Sharma, S., Kaul, A., Ahmed, S., & Sharma, S. (2021). A detailed tutorial survey on VANETs: Emerging architectures, applications, security issues, and solutions. International Journal of Communication Systems, 34(14), e4905.

    Article  Google Scholar 

  3. Hasrouny, H., Samhat, A. E., Bassil, C., & Laouiti, A. (2017). VANet security challenges and solutions: A survey. Vehicular Communications, 7, 7–20.

    Article  Google Scholar 

  4. Bhoi, S. K., & Khilar, P. M. (2014). Vehicular communication: A survey. IET Networks, 3(3), 204–217.

    Article  Google Scholar 

  5. Altayeb, M., & Mahgoub, I. (2013). A survey of vehicular ad hoc networks routing protocols. International Journal of Innovation and Applied Studies, 3(3), 829–846.

    Google Scholar 

  6. Singh, G. (2022). Performance evaluation for ad hoc routing protocol in vehicular ad hoc network (VANET). Global Journal of Computer Science and Technology. 22(17).

  7. Awang, A., Husain, K., Kamel, N., & Aissa, S. (2017). Routing in vehicular ad-hoc networks: A survey on single-and cross-layer design techniques, and perspectives. IEEE Access, 5, 9497–9517.

    Article  Google Scholar 

  8. Qureshi, K. N., & Abdullah, H. (2013). Topology based routing protocols for vanet and their comparison with manet. Journal of Theoretical and Applied Information Technology, 58(3), 707–715.

    Google Scholar 

  9. Gadkari, M. Y., & Sambre, N. B. (2012). VANET: Routing protocols, security issues and simulation tools. IOSR Journal of Computer Engineering, 3(3), 28–38.

    Article  Google Scholar 

  10. Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20–31.

    Article  Google Scholar 

  11. Abdeen, M. A., Beg, A., Mostafa, S. M., AbdulGhaffar, A., Sheltami, T. R., & Yasar, A. (2022). Performance Evaluation of VANET Routing Protocols in Madinah City. Electronics, 11(5), 777.

    Article  Google Scholar 

  12. Singh, S., & Agrawal, S. (2014). VANET routing protocols: Issues and challenges. In: 2014 Recent Advances in Engineering and Computational Sciences (RAECS) (pp. 1–5). IEEE.

  13. Cooper, C., Franklin, D., Ros, M., Safaei, F., & Abolhasan, M. (2016). A comparative survey of VANET clustering techniques. IEEE Communications Surveys & Tutorials, 19(1), 657–681.

    Article  Google Scholar 

  14. Elhoseny, M., & Shankar, K. (2020). Energy efficient optimal routing for communication in VANETs via clustering model. In M. Elhoseny & A. E. Hassanien (Eds.), Emerging technologies for connected internet of vehicles and intelligent transportation system networks: Emerging technologies for connected and smart vehicles (pp. 1–14). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-22773-9_1

    Chapter  Google Scholar 

  15. Mokhayeri, S., & Kheirabadi, M. T. (2021). Zone selection strategy in Geocast routing algorithms in VANET: A review. The Journal of Supercomputing, 77(11), 12953–12986.

    Article  Google Scholar 

  16. Allal, S., & Boudjit, S. (2013). Geocast routing protocols for VANETs: Survey and geometry-driven scheme proposal. Journal of Internet Services and Information Security, 3(1/2), 20–36.

    Google Scholar 

  17. Liu, X. T., Hu, B. J., Wei, Z. H., & Zhu, Z. X. (2017). A congestion-aware GPCR routing protocol for vehicular ad-hoc network in urban scenarios. In: 2017 IEEE 9th international conference on communication software and networks (ICCSN) (pp. 166–170). IEEE.

  18. Malik, R. F., Nurfatih, M. S., Ubaya, H., Zulfahmi, R., & Sodikin, E. (2017). Evaluation of greedy perimeter stateless routing protocol on vehicular ad hoc network in palembang city. In: 2017 International conference on data and software engineering (ICoDSE) (pp. 1–5). IEEE.

  19. Liu, L., Chen, C., Ren, Z., Qiu, T., & Yang, K. (2018). A delay-aware and backbone-based geographic routing for urban VANETs. In: 2018 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE.

  20. Ardakani, S. P. (2018). ACR: A Cluster-based routing protocol for VANET. International Journal of Wireless & Mobile Networks (IJWMN) Vol10.

  21. Daud, S., Gilani, S. M. M., Riaz, M. S., & Kabir, A. (2019). DSDV and AODV protocols performance in Internet of Things environment. In: 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN) (pp. 466–470). IEEE.

  22. Kim, B. C., Lee, H. S., & Ma, J. (2005). Enhanced ad hoc on-demand distance vector (eaodv) routing protocol with route distribution. In: 62nd IEEE Vehicular Technology Conference, VTC 2005 (pp. 314–318). IEEE.

  23. Hasan, M., & Sarker, O. (2020). Routing protocol selection for intelligent transport system (ITS) of VANET in high mobility areas of Bangladesh. In: Proceedings of international joint conference on computational intelligence (pp. 123–135). Springer, Singapore.

  24. Malik, S., & Sahu, P. K. (2019). A comparative study on routing protocols for VANETs. Heliyon, 5(8), e02340.

    Article  Google Scholar 

  25. Mahdi, H. F., Abood, M. S., & Hamdi, M. M. (2021). Performance evaluation for vehicular ad-hoc networks-based routing protocols. Bulletin of Electrical Engineering and Informatics, 10(2), 1080–1091.

    Article  Google Scholar 

  26. Waseem, R. M., Khan, F. Z., Ahmad, M., Naseem, A., Jhanjhi, N. Z., & Ghosh, U. (2021). Performance Evaluation of AOMDV on Realistic and Efficient VANet Simulations. Wireless Personal Communications, 1–20. https://doi.org/10.1007/s11277-021-08358-7

  27. Oliveira, R., Montez, C., Boukerche, A., & Wangham, M. S. (2017). Reliable data dissemination protocol for VANET traffic safety applications. Ad Hoc Networks, 63, 30–44.

    Article  Google Scholar 

  28. Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent UAV-assisted routing protocol for urban VANETs. Computer communications, 107, 93–111.

    Article  Google Scholar 

  29. Rajput, U., Abbas, F., Eun, H., & Oh, H. (2017). A hybrid approach for efficient privacy-preserving authentication in VANET. IEEE Access, 5, 12014–12030.

    Article  Google Scholar 

  30. Lim, K. G., Lee, C. H., Chin, R. K. Y., Yeo, K. B., & Teo, K. T. K. (2017, October). SUMO enhancement for vehicular ad hoc network (VANET) simulation. In: 2017 IEEE 2nd international conference on automatic control and intelligent systems (I2CACIS) (pp. 86–91). IEEE.

  31. Azevedo, C. L., Deshmukh, N. M., Marimuthu, B., Oh, S., Marczuk, K., Soh, H., & Ben-Akiva, M. E. (2017). Simmobility short-term: An integrated microscopic mobility simulator. Transportation Research Record, 2622(1), 13–23.

    Article  Google Scholar 

  32. Carneiro, G. (2010). NS-3: Network simulator 3. In: UTM Lab Meeting April (Vol. 20, pp. 4–5).

  33. Weber, J. S., Neves, M., & Ferreto, T. (2021). VANET simulators: An updated review. Journal of the Brazilian Computer Society, 27(1), 1–31.

    Article  Google Scholar 

  34. Korkalainen, M., Sallinen, M., Kärkkäinen, N., & Tukeva, P. (2009). Survey of wireless sensor networks simulation tools for demanding applications. In: 2009 Fifth international conference on networking and services (pp. 102–106). IEEE.

  35. Issariyakul, T., & Hossain, E. (2009). Introduction to network simulator 2 (NS2). In Introduction to network simulator NS2 (pp. 1–18). Springer, Boston, MA.

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Sehrawat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehrawat, P., Chawla, M. Interpretation and Investigations of Topology Based Routing Protocols Applied in Dynamic System of VANET. Wireless Pers Commun 128, 2259–2285 (2023). https://doi.org/10.1007/s11277-022-10042-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10042-3

Keywords

Navigation