Skip to main content
Log in

A Novel Recessed Microstrip Pin-Hole Conductor Fed Patch Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A novel recessed microstrip pin-hole conductor fed patch antenna is presented in this paper. The antenna is designed with a rectangular copper conducting plane over which the dielectric substrate and the conducting patch antenna are fabricated. A 50 Ω microstrip line, recessed from the edge to the centre of the patch, feeds the antenna. A thin conductor (pin-hole conductor) from the feed line's edge enters into the substrate through a small slot known as a pin-hole created at the antenna's conducting plane and is connected to the positive terminal of the SMA connector. Based on the simulation results, the antenna is fabricated with 30 mm × 25 mm (patch) and 60 mm × 50 mm (RTDUROID 5880 substrate) dimensions, for the frequencies ranging from 2.5 to 5.5 GHz. The operation theory and parametric analysis of this antenna are presented with a prototype being measured. The measured high gain of 9.8 dBi and the compact design suit the antenna to be applied for WLAN and WiMAX applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

Data Sharing not required for this research work.

Code Availability

We used the own data material and coding.

References

  1. Papapolymerou, I., Franklin Drayton, R., & Katehi, L. P. B. (1998). Micromachined patch antennas. IEEE Trans Antennas Propag, 46(2), 275–283.

    Article  Google Scholar 

  2. Jaiswal, A., Abegaonkar, M. P., & Koul, S. K. (2019). Highly efficient, wideband microstrip patch antenna with recessed ground at 60 GHz. IEEE Transactions on Antennas and Propagation, 67(4), 2280–2288. https://doi.org/10.1109/TAP.2019.2894319

    Article  Google Scholar 

  3. Ahmad I., Sun H., Zhang Y. Samad A., (2020) High gain rectangular slot microstrip patch antenna for 5g mm-wave wireless communication. In 2020 5th International Conference on Computer and Communication Systems (ICCCS), pp. 723–727. https://doi.org/10.1109/ICCCS49078.2020.9118602.

  4. Liu, N., Zhu, L., Liu, Z., & Liu, Y. (2019). Dual-band single-layer microstrip patch antenna with enhanced bandwidth and beamwidth based on reshaped multiresonant modes. IEEE Transactions on Antennas and Propagation, 67(11), 7127–7132. https://doi.org/10.1109/TAP.2019.2927646

    Article  Google Scholar 

  5. Radavaram, S., & Pour, M. (2019). Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots. IEEE Transactions on Antennas and Propagation, 67(3), 1501–1508. https://doi.org/10.1109/TAP.2018.2885433

    Article  Google Scholar 

  6. Li, W. T., Hei, Y. Q., Grubb, P. M., Shi, X., & Chen, R. T. (2018). Inkjet printing of wideband stacked microstrip patch array antenna on ultrathin flexible substrates. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(9), 1695–1701. https://doi.org/10.1109/TCPMT.2018.2848459

    Article  Google Scholar 

  7. Singh, R. K., Basu, A., & Koul, S. K. (2018). A novel reconfigurable microstrip patch antenna with polarization agility in two switchable frequency bands. IEEE Transactions on Antennas and Propagation, 66(10), 5608–5613. https://doi.org/10.1109/TAP.2018.2860118

    Article  Google Scholar 

  8. Jafargholi, A., Jafargholi, A., & Ghalamkari, B. (2018). Dual-band slim microstrip patch antennas. IEEE Transactions on Antennas and Propagation, 66(12), 6818–6825. https://doi.org/10.1109/TAP.2018.2871964

    Article  Google Scholar 

  9. Ge, L., Li, M., Wang, J., & Gu, H. (2017). Unidirectional dual-band stacked patch antenna with independent frequency reconfiguration. IEEE Antennas and Wireless Propagation Letters, 16, 113–116. https://doi.org/10.1109/LAWP.2016.2558658

    Article  Google Scholar 

  10. Liu, S., Wu, W., & Fang, D. (2016). Single-feed dual-layer dual-band e-shaped and u-slot patch antenna for wireless communication application. IEEE Antennas and Wireless Propagation Letters, 15, 468–471. https://doi.org/10.1109/LAWP.2015.2453329

    Article  Google Scholar 

  11. Liu, N., Zhu, L., Zhang, X., & Choi, W. (2017). A wideband differential-fed dual-polarized microstrip antenna under radiation of dual improved odd-order resonant modes. IEEE Access, 5, 23672–23680. https://doi.org/10.1109/ACCESS.2017.2751498

    Article  Google Scholar 

  12. Quarfoth, R., Zhou, Y., & Sievenpiper, D. (2015). Flexible patch antennas using patterned metal sheets on silicone. IEEE Antennas and Wireless Propagation Letters, 14, 1354–1357. https://doi.org/10.1109/LAWP.2015.2406887

    Article  Google Scholar 

  13. Nguyen-Trong, N., Hall, L., & Fumeaux, C. (2015). A frequency- and polarization-reconfigurable stub-loaded microstrip patch antenna. IEEE Transactions on Antennas and Propagation, 63(11), 5235–5240. https://doi.org/10.1109/TAP.2015.2477846

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, X., & Zhu, L. (2016). Gain-enhanced patch antennas with loading of shorting pins. IEEE Transactions on Antennas and Propagation, 64(8), 3310–3318. https://doi.org/10.1109/TAP.2016.2573860

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, N., Zhu, L., Choi, W., & Zhang, X. (2017). Wideband shorted patch antenna under radiation of dual-resonant modes. IEEE Transactions on Antennas and Propagation, 65(6), 2789–2796. https://doi.org/10.1109/TAP.2017.2688802

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, N., Zhu, L., Choi, W., & Zhang, X. (2017). A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance. IEEE Transactions on Antennas and Propagation, 65(3), 1055–1062. https://doi.org/10.1109/TAP.2017.2657486

    Article  MathSciNet  MATH  Google Scholar 

  17. Balanis, C. A. (2005). Antenna theory. Wiley.

    Google Scholar 

  18. Siwiak, K., & Bahreini, Y. (2007). Radiowave propagation and antennas for personal communications. Artech House.

    Google Scholar 

  19. Prakasam, V., & Sandeep, P. (2020). Dual edge-fed left hand and right hand circularly polarized rectangular micro-strip patch antenna for wireless communication applications. IRO Journal on Sustainable Wireless Systems, 2(3), 107–117.

    Article  Google Scholar 

  20. Christina, G. (2020). Initial access through beamforming in mm wave. IRO Journal on Sustainable Wireless Systems, 2(2), 92–99.

    Article  Google Scholar 

  21. Collin, R. E. (1985). Antennas and radiowave propagation. McGraw-Hill.

    Google Scholar 

  22. Huang, Yi., & Boyle, Kevin. (2008). Antennas: from theory to practice. Wiley.

    Book  Google Scholar 

Download references

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Arun Francis.

Ethics declarations

Conflict of interest

All author states that there is no conflict of interest.

Humans and Animal Research

Humans and Animals are not involved in this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, G.A., Karthigaikumar, P. A Novel Recessed Microstrip Pin-Hole Conductor Fed Patch Antenna. Wireless Pers Commun 128, 701–727 (2023). https://doi.org/10.1007/s11277-022-09998-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09998-z

Keywords

Navigation