Skip to main content

Advertisement

Log in

An Energy Efficient Based Enhanced Optical OFDM for SISO and MIMO Visible Light Communication System in Indoor Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recent developments in wireless digital communication have made Visible Light Communication (VLC) a promising technology. Comparatively speaking, the VLC system used in this task offers better performance and efficiency. In this study, a modified Optical Orthogonal Frequency Division Multiplexing (indoor VLC communication model) was proposed. To overcome channel capacity restrictions caused by a constrained LED modulation bandwidth, MIMO VLC systems must meet the high Signal-to-Noise Ratio (SNR) criteria needed for SISO channel LED lighting. Generalized Frequency Division Multiplexing (GFDM), Space–Time Block Coded OFDM (STBC-OFDM), and Electro-Optical OFDM (EO-OFDM) are frequently compared and contrasted in wideband technology (Enhanced Optical OFDM). The suggested system, when compared to other systems, increases BER (Bit Error Rate) performance and throughput for all MIMO via SISO VLC communication channel gains that may be available. The suggested approach keeps the standard method's data rate constant while BER is improved by 20 dB and 10–5. EO-OFDM offers better data rates than OFDM, but is less effective than PAPR, according to research on channels with limited bandwidth (peak-to-average power ratio). To assess the SNR throughput of the proposed EO-OFDM scheme in comparison to O-OFDM, OAK-OFDM, and PWM-OFDM in order to get a throughput of 20 Mbit/s. In comparison to MIMO-based O-OFDM, OAK-OFDM, and STBC-OFDM, the suggested EO-OFDM technology runs at speeds faster than 7.6 Mbits/s. This experiment's overall performance is superior to state-of-the-art considering that LEDs are linear and have a constrained dynamic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Lian, J., Noshad, M., & Brandt-Pearce, M. (2019). Comparison of optical OFDM and M-PAM for LED-based communication systems. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2019.2891593

    Article  Google Scholar 

  2. Ji, R., Wang, S.-W., Liu, Q., & Lu, W. (2018). High-speed visible light communications: Enabling technologies and state of the art. Applied Sciences, 8, 589. https://doi.org/10.3390/app8040589

    Article  Google Scholar 

  3. Khalighi, M., Long, S., Bourennane, S., & Ghassemlooy, Z. (2017). PAM-and CAP-based transmission schemes for visible-light communications. IEEE Access, 5, 27002–27013. https://doi.org/10.1109/ACCESS.2017.2765181

    Article  Google Scholar 

  4. Matheus, L., Borges, A., Vieira, L., Vieira, M., & Gnawali, O. (2019). Visible Light Communication: Concepts, Applications and Challenges. IEEE Communications Surveys & Tutorials. 21, 1-1. https://doi.org/10.1109/COMST.2019.2913348

  5. Wang, Q., Wang, Z., & Dai, L. (2015). Multiuser MIMO-OFDM for visible light communications. IEEE Photonics Journal, 7(6), 1–11. https://doi.org/10.1109/JPHOT.2015.2497224

    Article  Google Scholar 

  6. Karunatilaka, D., Zafar, F., Kalavally, V., & Parthiban, R. (2015). LED based indoor visible light communications: State of the art. IEEE Communications Surveys & Tutorials, 17, 1–30. https://doi.org/10.1109/COMST.2015.2417576

    Article  Google Scholar 

  7. Wang, Qi., Wang, Z., & Dai, L. (2015). Multiuser MIMO-OFDM for visible light communications. IEEE Photonics Journal, 7, 1–11. https://doi.org/10.1109/JPHOT.2015.2497224

    Article  Google Scholar 

  8. Ma, Hao., Lampe, Lutz. & Hranilovic, Steve. (2013). Robust MMSE linear precoding for visible light communication broadcasting systems (pp. 1081-1086). https://doi.org/10.1109/GLOCOMW.2013.6825136

  9. Sung, J.-Y., Yeh, C.-H., Chow, C.-W., Lin, W.-F., & Liu, Y. (2015). Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system. Optics Communications., 355, 261–268. https://doi.org/10.1016/j.optcom.2015.06.070

    Article  Google Scholar 

  10. Lin, S. H., Liu, C., Bao, X., et al. (2018). Indoor visible light communications: Performance evaluation and optimization. EURASIP Journal on Wireless Communication Networking, 2018, 228. https://doi.org/10.1186/s13638-018-1243-x

    Article  Google Scholar 

  11. Li, X., Vucic, J., Jungnickel, V., & Armstrong, J. (2012). On the capacity of intensity-modulated direct-detection systems and the information rate of ACO-OFDM for indoor optical wireless applications. IEEE Transactions on Communications, 60(3), 799–809.

    Article  Google Scholar 

  12. Li, C. P., Yi, Y., & Lee, K. S. (2015). Pilot self-coding applied in optical OFDM systems. Internationala Journal of Electronics, 102(4), 548–562.

    Article  Google Scholar 

  13. Yang, X., Min, Z., Xiongyan, T., et al. (2012). A post- processing channel estimation method for DCO- OFDM visible light communication. In International Symposium on Communication Systems, Networks & Digital Signal Processing (pp. 1–4).

  14. Zhang, T., Guo, S., Chen, H., et al. (2015). Enhancing the bit error rate of indoor visible light communication systems using adaptive channel estimation algorithm‟. IET Communications, 9(4), 501–507.

    Article  Google Scholar 

  15. Lin, B., et al. (2017). Efficient frequency-domain channel equalisation methods for OFDM visible light communications. IET Communications, 11(1), 25–29. https://doi.org/10.1049/iet-com.2016.0787

    Article  Google Scholar 

  16. Mirvakili, A., Koomson, V. J., Rahaim, M., Elgala, H., Little, T. D. C., & “Wireless access test-bed through visible light and dimming compatible OFDM,”,. (2015). IEEE wireless communications and networking conference (WCNC). New Orleans, LA, 2015, 2268–2272. https://doi.org/10.1109/WCNC.2015.7127820

    Article  Google Scholar 

  17. Yang, F., Gao, J., & Liu, S. (2016). Novel visible light communication approach based on hybrid OOK and ACO-OFDM. IEEE Photonics Technology Letters, 28, 1–1. https://doi.org/10.1109/LPT.2016.2555620

    Article  Google Scholar 

  18. Singh, R., O’Farrell, T., & David, J. (2014). An enhanced color shift keying modulation scheme for high-speed wireless visible light communications. Journal of Lightwave Technology, 32, 2582–2592.

    Article  Google Scholar 

  19. Viñals, R., Muñoz, O., Agustín, A., & Vidal, J. (2020). Multi-User Precoder Designs for RGB Visible Light Communication Systems. Sensors, 20, 6836. https://doi.org/10.3390/s20236836

    Article  Google Scholar 

  20. Li, X., & Wang, L. (2014). High rate space-time block coded spatial Modulation with cyclic structure. Communications Letters IEEE, 18, 532–535. https://doi.org/10.1109/LCOMM.2014.012714.132544

    Article  Google Scholar 

  21. Manikandan, A., Nirmala, V., & Sheikdavood, K. (2014). STBC-OFDM Downlink Baseband Receiver. International Journal of American Eurasian Network for Scientific Information, 8(19), 69–74.

  22. Pathak, P., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17, 2047–2077.

    Article  Google Scholar 

  23. Narmanlioglu, O., Kizilirmak, R. C., Baykas, T., & Uysal, M. (2017). Link adaptation for mimoofdm visible light communication systems. IEEE Access, 5, 26006–26014.

    Article  Google Scholar 

  24. Lin, S.-H., Liu, C., Bao, Xu., & Wang, J.-Y. (2018). Indoor visible light communications: Performance evaluation and optimization. EURASIP Journal on Wireless Communications and Networking., 2018, 1. https://doi.org/10.1186/s13638-018-1243-x

    Article  Google Scholar 

  25. Tsonev, D., Videv, S., & Haas, H. (2015). Unlocking spectral efficiency in intensity modulation and direct detection systems. IEEE Journal on Selected Areas in Communications, 33(9), 1758–1770. https://doi.org/10.1109/JSAC.2015.2432530

    Article  Google Scholar 

  26. Offiong, F. B., Sinanović, S., & Popoola, W. O. (2017). On PAPR reduction in pilot-assisted optical OFDM communication systems. IEEE Access, 5, 8916–8929. https://doi.org/10.1109/ACCESS.2017.2700877

    Article  Google Scholar 

  27. Jia, L., Wang, J. Y., Zhang, W., Chen, M., & Wang, J. B. (2015). Symbol error rate analysis for colour-shift keying modulation in visible light communication system with RGB light-emitting diodes. IET Optoelectronics, 9(5), 199–206.

    Article  Google Scholar 

  28. Torres, J. C., Montes, A., Mendoza, S. L, Fernández, P. R., Betancourt, J. S., Escandell, L., Del Valle, C. I., Sánchez-Pena, J. M. (2020). A low-cost visible light positioning system for indoor positioning. Sensors (Basel), 9, 20(18), 5145. https://doi.org/10.3390/s20185145. PMID: 32916964; PMCID: PMC7571180.

  29. S. Long, M. Khalighi, M. Wolf, Z. Ghassemlooy and S. Bourennane, (2015) Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications. In 2015 4th International Workshop on Optical Wireless Communications (IWOW) Istanbul (pp. 16–20). doi: https://doi.org/10.1109/IWOW.2015.7342257

  30. Li, Y., Qiu, H., Xiao, C., & Fu, J. (2020). A novel PAPR reduction algorithm for DCO-OFDM/OQAM system in underwater VLC. Optics Communications, 463, 125449.

  31. Zhang, T., Ji, H., Ghassemlooy, Z., Tang, X., Lin, B., & Qiao, S. (2020). Spectrum-efficient triple-layer hybrid optical OFDM for IM/DD-based optical wireless communications. in IEEE Access 8, 10352–10362. https://doi.org/10.1109/ACCESS.2020.2964792.

    Article  Google Scholar 

  32. Michailow, N., Matthé, M., Gaspar, I. S., Caldevilla, A. N., Mendes, L. L., Festag, A., & Fettweis, G. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045–3061.

    Article  Google Scholar 

  33. Wunder, G., Jung, P., Kasparick, M., Wild, T., Schaich, F., Chen, Y., Ten Brink, S., Gaspar, I., Michailow, N., Festag, A., et al. (2014). 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105.

    Article  Google Scholar 

  34. Li, C., Yi, Y., Lee, K., & Lee, K. (2013). Performance analysis of visible light communication using the STBC-OFDM technique for intelligent transportation systems. International Journal of Electronics, 101, 1117–1133. https://doi.org/10.1080/00207217.2013.809644

    Article  Google Scholar 

Download references

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Deepthi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepthi, S., Visalakshi, P. An Energy Efficient Based Enhanced Optical OFDM for SISO and MIMO Visible Light Communication System in Indoor Environment. Wireless Pers Commun 128, 365–385 (2023). https://doi.org/10.1007/s11277-022-09959-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09959-6

Keywords

Navigation