Skip to main content
Log in

Analysis of Drone Assisted Network Coded Cooperation for LoS Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper consider a Drone Assisted Network Coded Cooperation (DA-NCC) scenario for Line of Sight (LoS) channel environments. For analysing the performance of DA-NCC, Decode-and-Forward (DF) protocol is used at the drone and Selection Combining (SC) is performed at the destination node. An analytical closed-form formulation of the outage probability is devised and proven through simulations to assess network performance of the DA-NCC system. In order to have a better understanding of deterministic networks, a discussion on capacity and a comparison of alternative rectangular designs for deterministic networks are also presented. Insightful results on the relation among drone height, DNC-noise and network geometry may play an important role during the performance analysis of the DA-NCC system. Using closed-form expressions of performance measures, system designers can quickly examine the effects of various parameters on the DA-NCC network’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. DNC-noise and Variance of DNC-noise can also be written in terms of SNR as

    $$\begin{aligned} {\mathbb {N}}_i=\xi _{D_i}- \sum \limits _{j=1, j\ne i}^{N}\left( \sqrt{\frac{\Gamma _{RD_i}}{\Gamma _{S_jD_i}}}\right) \xi _{D_i}. \end{aligned}$$
    $$\begin{aligned} \sigma _{{\mathbb {N}}_i}^2=\sigma _{D_i}^2 \underbrace{\left[ 1+ \sum \limits _{j=1, j\ne i}^{N}\left( \frac{{\Gamma }_{RD_i}}{{\Gamma }_{S_jD_i}}\right) \right] }_{A}. \end{aligned}$$
  2. Deterministic networks: Networks in which placement of nodes is in some given manner and not in a random fashion at all.

  3. Symmetrical networks: Distance among ground nodes are same and distance between drone to ground nodes are same.

References

  1. Sharma, S., Shi, Y., Liu, J., Hou, Y. T., Kompella, S., & Midkiff, S. F. (2012). Network coding in cooperative communications: Friend or foe? IEEE Transactions on Mobile Computing, 11(7), 1073. https://doi.org/10.1109/TMC.2011.130

    Article  Google Scholar 

  2. Jawad, A. M., Jawad, H. M., Nordin, R., Gharghan, S. K., Abdullah, N. F., & Abu-Alshaeer, M. J. (2019). Wireless power transfer with magnetic resonator coupling and sleep/active strategy for a drone charging station in smart agriculture. IEEE Access, 7, 139839. https://doi.org/10.1109/ACCESS.2019.2943120

    Article  Google Scholar 

  3. Ma’sum, M.A., Arrofi, M.K., Jati, G., Arifin, F., Kurniawan, M.N., Mursanto, P., Jatmiko, W.(2013) in 2013 international conference on advanced computer science and information systems (ICACSIS) , pp. 161–166. https://doi.org/10.1109/ICACSIS.2013.6761569

  4. Khosravi, M., Pishro-Nik, H., (2020) in 2020 IEEE 91st vehicular technology conference (VTC2020-Spring) (2020), pp. 1–5. https://doi.org/10.1109/VTC2020-Spring48590.2020.9129495

  5. Lu, H., Li, Y., Mu, S., Wang, D., Kim, H., & Serikawa, S. (2018). Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet of Things Journal, 5(4), 2315. https://doi.org/10.1109/JIOT.2017.2737479

    Article  Google Scholar 

  6. Ju, M., & Yang, H. (2019). Optimum design of energy harvesting relay for two-way decode-and-forward relay networks under max-min and max-sum criterions. IEEE Transactions on Communications, 67(10), 6682. https://doi.org/10.1109/TCOMM.2019.2927210.

    Article  Google Scholar 

  7. Zhou, X., Durrani, S., Guo, J., & Yanikomeroglu, H. (2019). Underlay drone cell for temporary events: Impact of drone height and aerial channel environments. IEEE Internet of Things Journal, 6(2), 1704. https://doi.org/10.1109/JIOT.2018.2875166

    Article  Google Scholar 

  8. Fan, Q., & Ansari, N. (2019). Towards traffic load balancing in drone-assisted communications for IoT. IEEE Internet of Things Journal, 6(2), 3633. https://doi.org/10.1109/JIOT.2018.2889503

    Article  Google Scholar 

  9. Hiraguri, T., Nishimori, K., Shitara, I., Mitsui, T., Shindo, T., Kimura, T., Matsuda, T., & Yoshino, H. (2020). A cooperative transmission scheme in drone-based networks. IEEE Transactions on Vehicular Technology, 69(3), 2905. https://doi.org/10.1109/TVT.2020.2965597

    Article  Google Scholar 

  10. Huang, H., & Savkin, A. V. (2018). An algorithm of efficient proactive placement of autonomous drones for maximum coverage in cellular networks. IEEE Wireless Communications Letters, 7(6), 994. https://doi.org/10.1109/LWC.2018.2846237

    Article  Google Scholar 

  11. Zhang, B., Hu, J., Huang, Y., El-Hajjar, M., & Hanzo, L. (2015). Outage analysis of superposition-modulation-aided network-coded cooperation in the presence of network coding noise. IEEE Transactions on Vehicular Technology, 64(2), 493. https://doi.org/10.1109/TVT.2014.2322074

    Article  Google Scholar 

  12. Vu, T. X., Duhamel, P., & Di Renzo, M. (2015). On the diversity of network-coded cooperation with decode-and-forward relay selection. IEEE Transactions on Wireless Communications, 14(8), 4369. https://doi.org/10.1109/TWC.2015.2420098

    Article  Google Scholar 

  13. Umar, R., Yang, F., Xu, H., & Mughal, S. (2019). Multiple relay-based Reed-Muller network-coded cooperation for wireless communication system. IET Communications, 13(13), 2034.

    Article  Google Scholar 

  14. Bao, X., & Li, J. (2008). Adaptive network coded cooperation (ANCC) for wireless relay networks: Matching code-on-graph with network-on-graph. IEEE Transactions on Wireless Communications, 7(2), 574. https://doi.org/10.1109/TWC.2008.060439

    Article  Google Scholar 

  15. Ding, Z., & Leung, K. K. (2011). On the combination of cooperative diversity and network coding for wireless uplink transmissions. IEEE Transactions on Vehicular Technology, 60(4), 1590. https://doi.org/10.1109/TVT.2011.2112787

    Article  Google Scholar 

  16. Di Renzo, M., Iezzi, M., & Graziosi, F. (2013). On diversity order and coding gain of multisource multirelay cooperative wireless networks with binary network coding. IEEE Transactions on Vehicular Technology, 62(3), 1138. https://doi.org/10.1109/TVT.2012.2229476

    Article  Google Scholar 

  17. Tang, Z., Wang, H., Hu, Q., & Li, C. (2014). Performance analysis of multi-user multi-round linear network coded cooperation. IEEE Communications Letters, 18(10), 1767. https://doi.org/10.1109/LCOMM.2014.2349985

    Article  Google Scholar 

  18. Di Renzo, M., Iezzi, M., & Graziosi, F. (2013). Error performance and diversity analysis of multi-source multi-relay wireless networks with binary network coding and cooperative MRC. IEEE Transactions on Wireless Communications, 12(6), 2883. https://doi.org/10.1109/TWC.2013.042413.121194

    Article  Google Scholar 

  19. Datsika, E., Antonopoulos, A., Zorba, N., & Verikoukis, C. (2017). Cross-network performance analysis of network coding aided cooperative outband D2D communications. IEEE Transactions on Wireless Communications, 16(5), 3176. https://doi.org/10.1109/TWC.2017.2675887

    Article  Google Scholar 

  20. Yi, Z., Ju, M., & Kim, I. (2011). Outage probability and optimum combining for time division broadcast protocol. IEEE Transactions on Wireless Communications, 10(2), 407. https://doi.org/10.1109/TWC.2011.120810.100873

    Article  Google Scholar 

  21. Peng, C., Zhang, Q., Zhao, M., Yao, Y., & Jia, W. (2008). IEEE Transactions on Wireless Communications, 7(8), 3090.

  22. Mobini, Z., Sadeghi, P., Khabbazian, M., & Zokaei, S. (2012). Power allocation and group assignment for reducing network coding noise in multi-unicast wireless systems. IEEE Transactions on Vehicular Technology, 61(8), 3615.

    Article  Google Scholar 

  23. Wang, S., Song, Q., Wang, X., & Jamalipour, A. (2011). Power and rate adaptation for analog network coding. IEEE Transactions on Vehicular Technology, 60(5), 2302. https://doi.org/10.1109/TVT.2011.2135869

    Article  Google Scholar 

  24. Di Renzo, M. (2014). On the achievable diversity of repetition-based and relay selection network-coded cooperation. IEEE Transactions on Communications, 62(7), 2296. https://doi.org/10.1109/TCOMM.2014.2327615

    Article  Google Scholar 

  25. Sun, Y., Ding, Z., & Dai, X. (2019). A user-centric cooperative scheme for UAV-assisted wireless networks in malfunction areas. IEEE Transactions on Communications, 67(12), 8786. https://doi.org/10.1109/TCOMM.2019.2944911

    Article  Google Scholar 

  26. Kim, Y. H., Chowdhury, I. A., & Song, I. (2020). Design and analysis of UAV-assisted relaying with simultaneous wireless information and power transfer. IEEE Access, 8, 27874. https://doi.org/10.1109/ACCESS.2020.2971692

    Article  Google Scholar 

  27. Kumar, P., Darshi, S., & Shailendra, S. (2021). Drone assisted device to device cooperative communication for critical environments. IET Communications, 15(7), 957.

    Article  Google Scholar 

  28. Goel, N., Gupta, V. (2019) in 2019 IEEE international conference on advanced networks and telecommunications systems (ANTS) (IEEE, 2019), pp. 1–5

  29. Khan, S. K., Farasat, M., Naseem, U., & Ali, F. (2020). Performance evaluation of next-generation wireless (5G) UAV relay. Wireless Personal Communications, 113(2), 945.

    Article  Google Scholar 

  30. Azari, M. M., Rosas, F., Chen, K., & Pollin, S. (2018). Ultra reliable UAV communication using altitude and cooperation diversity. IEEE Transactions on Communications, 66(1), 330. https://doi.org/10.1109/TCOMM.2017.2746105

    Article  Google Scholar 

  31. Tatar Mamaghani, M., Hong, Y. (2019) IEEE Access 7, 153060. https://doi.org/10.1109/ACCESS.2019.2948384

  32. Goel, N., Gupta, V. (2022) Wireless Personal Communications pp. 1–20

  33. P. Kumar, P. Singh, S. Darshi, S. Shailendra, in TENCON 2019 - 2019 IEEE Region 10 conference (TENCON) (2019), pp. 1174–1179. https://doi.org/10.1109/TENCON.2019.8929649

  34. Kumar, P., Bhattacharyya, S., Darshi, S., Sharma, A., Almohammedi, A. A., Shepelev, V., & Shailendra, S. (2022). Drone assisted network coded cooperation with energy harvesting: Strengthening the lifespan of the wireless networks. IEEE Access, 10, 43055. https://doi.org/10.1109/ACCESS.2022.3166516

    Article  Google Scholar 

  35. Kumar, P., Bhattacharyya, S., Darshi, S. (2021)in 2021 IEEE 18th India council international conference (INDICON) (2021), pp. 1–6. https://doi.org/10.1109/INDICON52576.2021.9691689

  36. Kumar, P., Singh, P., Darshi, S., & Shailendra, S. (2021). Analysis of drone assisted network coded cooperation for next generation wireless network. IEEE Transactions on Mobile Computing, 20(1), 93. https://doi.org/10.1109/TMC.2019.2939308

    Article  Google Scholar 

  37. Goldsmith, A. (2005) Wireless communications (Cambridge university press, 2005)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pankaj Kumar or Sam Darshi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Darshi, S. & Shailendra, S. Analysis of Drone Assisted Network Coded Cooperation for LoS Environments. Wireless Pers Commun 127, 3493–3510 (2022). https://doi.org/10.1007/s11277-022-09929-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09929-y

Keywords

Navigation