Skip to main content
Log in

Wıreless Communıcatıons Beyond 5 g: Teraherzwaves, Nano-Communıcatıons and the Internet of Bıo-Nano-Thıngs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Two promising technologies cosidered for the Beyond 5G networks are the terahertz and nano-technologies. Besides other possible application areas they hold the commitment to numerous new nano-scale solutions in the biomedical field. Nano-technology, as the name implies, examines the construction and design of nano-sized materials. These two interconnected emerging technologies have the potential to find application in quite many areas, one of the most importan being healthcare. This overview paper discusses the specifics of these technologies, their most important characteristics and introduces some of the trends for their application in the healthcare sector. In the first section terahertz frequency radio waves and their specific properties depending on the surrounding environment are discussed, followed by an introduction to nano-scale communications. Terahertz waves mandate the use of nano-scale antennas, which in turn brings us to the concept of nano-scale nodes. Nano-scale nodes are units that can perform the most basic functions of nano-machines and inter-nano-machine communications, which allow distributed nano-machines to perform more complex functions. Beyond 5G the development of these nano-communications is expected to lead to the emergence of new complex network systems. In the second part of this paper the paradigms of the Internet of Nano Things, molecular commnications and the Internet of Bio-Nano Things are discussed followed by details on their integration in healthcare related applications. The main goal of the article is to provide an introduction to these intriguing issues discussing advanced nano-technology enablers for Beyond 5G networks such as terahertz and molecular communications, nano-communications between nano-machines and the Internet of Bio-Nano-Things in light of health related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability (Data Transparency)

There is no data and materials in this manuscript.

Code Availability (Software Application or Custom Code)

There is no code in this manuscript.

References

  1. Feynman, R. P. (1960). There’s plenty of room at the bottom. Engineering and Science, 23(5), 22–36.

    Google Scholar 

  2. Akkaş, M. A. (2016). Terahertz channel modelling of wireless ultra-compact sensor networks using electromagnetic waves. IET Communications, 10(13), 1665–1672.

    Article  Google Scholar 

  3. Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nano-sensor networks. Nano-Communication Networks, Cilt, 1(1), 3–19.

    Article  Google Scholar 

  4. Federici, J., & Lothar, M. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, Cilt, 107(11), 111101.

    Article  Google Scholar 

  5. Yalçın, Y. & Atiş, M. (2015). 4-(Metilsülfanil) fenilboronik asit molekülünün titreşim spektrumlarının deneysel ve teorik yöntemlerle incelenmesi (Master's thesis, Nevşehir Hacı Bektaş Veli Üniversitesi)

  6. Takahashi, M. (2014). Terahertz vibrations and hydrogen-bonded networks in crystals. Crystals, 4(2), 74–103.

    Article  Google Scholar 

  7. Howard, S. L., Schlegel, C., & Iniewski, K. (2006). Error control coding in low-power wireless sensor networks: When is ECC energy-efficient? EURASIP Journal on Wireless Communications and Networking, 2006(2), 29–29.

    Google Scholar 

  8. Mittleman, D. M., Gupta, M., Neelamani, R., Baraniuk, R. G., Rudd, J. V., & Koch, M. (1999). Recent advances in terahertz imaging. Applied Physics B, 68(6), 1085–1094.

    Article  Google Scholar 

  9. Nazli, H., Bicak, E., Türetken, B., & Sezgin, M. (2010). An improved design of planar elliptical dipole antenna for UWB applications. Antennas and Wireless Propagation Letters, IEEE, 9, 264–267.

    Article  Google Scholar 

  10. Jepsen, P. U., David, G. C., & Martin, K. (2011). Terahertz spectroscopy and imaging–Modern techniques and applications. Laser and Photonics Reviews, 5(1), 124–166.

    Article  Google Scholar 

  11. Hack, E., Valzania, L., Gäumann, G., Shalaby, M., Hauri, C. P., & Zolliker, P. (2016). Comparison of thermal detector arrays for Off-Axis THz holography and real-time THz imaging. Sensors, 16, 221.

    Article  Google Scholar 

  12. Grbovic, D. & Karunasiri, G. (2009) Fabrication of Bi-material MEMS detector arrays for THz imaging. SPIE Defense, Security, and Sensing. International Society for Optics and Photonics.

  13. Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J. M., Alarcón, E., & Chigrin, D. N. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nano-structures-Fundamentals and Applications, 10(4), 353–358.

    Google Scholar 

  14. Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nano-networks. Selected Areas in Communicsations, IEEE Journal, 31(12), 685–694.

    Article  Google Scholar 

  15. Colthup, N. (2012). Introduction to infrared and Raman spectroscopy. Elsevier.

    Google Scholar 

  16. Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., & Hepsaydir, E. (2014). Cellular architecture and key technologies for 5G wireless communication networks. Communications Magazine, IEEE, 52(2), 122–130.

    Article  Google Scholar 

  17. Shilov, A. (2008). Samsung Unveils 2GB Flash Memory Chip. X-bit labs.

  18. Borghino, D. (2015). 3D flash technology moves forward with 10 TB SSDs and the first 48-layer memory cells. Gizmag. Retrieved March 2015.

  19. Burke, P. J. (2004). Carbon nano-tube devices for GHz to THz applications. International Society for Optics and Photonics.

    Google Scholar 

  20. Li, R. (2018). Towards a New Internet for the Year 2030 and Beyond. İn: Third Annual ITU IMT-2020/5G Workshop and Demo Day.

  21. Friis, H. T. A Note on a Simple Transmission Formula, Proc. IRE 34, pp. 254–56.

  22. Akkaş, M. A., 2018. Study of absorption-defined transmission windows in the terahertz band, Ad Hoc Networks 74- 30 – 33. doi:https://doi.org/10.1016/j.adhoc.2018.03.001.

  23. Akkaş, M. A. (2019). Terahertz wireless data communication. Wireless Networks, 25, 145–155. https://doi.org/10.1007/s11276-017-1548-4

    Article  Google Scholar 

  24. Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis for electromagnetic wireless nano-networks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.

    Article  Google Scholar 

  25. Dragoman, M., Muller, A. A., Dragoman, D., Coccetti, F., & Plana, R. (2010). Terahertz antenna based on graphene. Journal of Applied Physics, 107(10), 104313.

    Article  Google Scholar 

  26. Onur, A. R. I., Görgün, A. R., Adnan, K. A. Y. A., Çoşkun, Ö., & İrfan, K. A. Y. A. (2012). Karbon Nano-tüp Malzeme İle Tasarlanan Heliks Antenlerin Performans Parametrelerinin İncelenmesi. SDU Teknik Bilimler Dergisi 2(2)

  27. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., & Meyyappan, M. (2003). Carbon nano-tube sensors for gas and organic vapor detection. Nano-letters, 3(7), 929–933.

    Article  Google Scholar 

  28. Meyyappan, M. (2004). (Ed.). Carbon nano-tubes: science and applications. CRC press.

  29. Poizot, P. L. S. G., Laruelle, S., Grugeon, S., Dupont, L., & Tarascon, J. M. (2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407(6803), 496–499.

    Article  Google Scholar 

  30. Li, H., Huang, X., Chen, L., Wu, Z., & Liang, Y. (1999). A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters, 2(11), 547–549.

    Article  Google Scholar 

  31. Wirthlin, M. J., Hutchings, B. L. and Gilson, K. L. (1994). The nano-processor: a low resource reconfigurable processor. In: FPGAs for Custom Computing Machines, 1994. İn: Proceedings. IEEE workshop on (pp. 23–30). IEEE.

  32. Coskun, A., & Akkaya, E. U. (2006). Signal ratio amplification via modulation of resonance energy transfer: Proof of principle in an emission ratiometric Hg (II) sensor. Journal of the American Chemical Society, 128(45), 14474–14475.

    Article  Google Scholar 

  33. Zhu, H., Cheung, S., Chung, K. L., & Yuk, T. I. (2013). Linear-to-circular polarization conversion using metasurface. IEEE Transactions on Antennas and Propagation, 61(9), 4615–4623.

    Article  Google Scholar 

  34. Yao, S., Liu, X., Georgakopoulos, S. V., & Tentzeris, M. M. (2014). A novel reconfigurable origami spring antenna. In: Antennas and propagation society ınternational symposium (APSURSI), IEEE (pp. 374–375.). IEEE, 2014.

  35. Avouris, P. (2009). Carbon nano-tube electronics and photonics. Physics Today, 62(1), 34–40.

    Article  Google Scholar 

  36. Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nano-networks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.

    Article  Google Scholar 

  37. Akyildiz, I. F. & Jornet, J. M. (2010). The internet of nano-things. IEEE Wireless Communications 17(6).

  38. Akyildiz, I. F., Jornet, J. M., & Pierobon, M. (2011). Nano-networks: A new frontier in communications. Communications of the ACM, 54(11), 84–89.

    Article  Google Scholar 

  39. Gai, P. L., Stephan, O., McGuire, K., Rao, A. M., Dresselhaus, M. S., Dresselhaus, G., & Colliex, C. (2004). Structural systematics in boron-doped single wall carbon nano-tubes. Journal of Materials Chemistry, 14(4), 669–675.

    Article  Google Scholar 

  40. Bishoyi, P. K., & Misra, S. (2021). Enabling green mobile-edge computing for 5g-based healthcare applications. IEEE Transactions on Green Communications and Networking, 5(3), 1623–1631. https://doi.org/10.1109/TGCN.2021.3075903

    Article  Google Scholar 

  41. Dananjayan, S., & Raj, G. M. (2021). 5G in healthcare: How fast will be the transformation? Irish Journal of Medical Science, 190, 497–550. https://doi.org/10.1007/s11845-020-02329-w

    Article  Google Scholar 

  42. Siriwardhana, Y., Gür, G., Ylianttila, M., & Liyanage, M. (2021). The role of 5G for digital healthcare against COVID-19 pandemic: Opportunities and challenges, ICT Express, 7(2). ISSN, 244–252, 2405–9595.

    Google Scholar 

  43. Dixon, R. A., & Lamb, C. J. (1990). Molecular communication in interactions between plants and microbial pathogens. Annual review of plant biology, 41(1), 339–367.

    Article  Google Scholar 

  44. Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., & Nakano, T. (2006). Molecular communication. Journal-Institute of Electronics Information and Communication Engineers, 89(2), 162.

    Google Scholar 

  45. Atakan, B. & Gulec, F. (2019). Signal reconstruction in diffusion-based molecular communication. Transactions on Emerging Telecommunications Technologies 30(12).

  46. Gulec, F. & Atakan, B. (2020). Distance estimation methods for a practical macroscale molecular communication system. Nano Communication Networks.

  47. Atakan, B., Akan, O. B., & Balasubramaniam, S. (2012). Body area nanonetworks with molecular communications in nanomedicine. IEEE Communications Magazine 50(1).

  48. Youssef, M., Ghanim, F., Imad, N., Alqasim, A., & Shubair, R. (2018). Design of intra-body nano-communication network for future nano-medicine.

  49. Wang, W. D., Chen, Z. T., Kang, B. G., & Li, R. (2008). Construction of an artificial inter-cellular communication network using the nitric oxide signaling elements in mammalian cells. Experimental Cell Research, 314(4), 699–706.

  50. Leoni, L. & Desai, T. A. (2001). Nanoporous biocapsules for the encapsulation of insulinoma cells: biotransport and biocompatibility considerations. IEEE Transactions on Biomedical Engineering 48(11).

  51. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., & Weiss, R. (2005). A synthetic multicellular system for programmed pattern formation. Nature, 434, 1130–1134.

  52. Sesia, S., Baker, M., & Toufik, I. (2011). LTE-the UMTS long term evolution: from theory to practice, Wiley.

  53. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Article  Google Scholar 

  54. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.

    Article  Google Scholar 

  55. Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., & Borriello, G. (2009). Building the internet of things using RFID: the RFID ecosystem experience. IEEE Internet Computing 13(3).

  56. Scully, P. (2018). The top 10 IoT segments in 2018—based on 1,600 real IoT projects. IoT Analytics: Market Insights for the Internet of Things.

  57. Internet of Nano-Things Market. (2020). Growth, Trends and Forecast (2020–2025) Mordor Intelligence Global Report, ID: 4591698.

  58. Aktaş, F., Çeken, C., & Erdemli, Y.E. (2016). Nesnelerin İnterneti Teknolojisinin Biyomedikal Alanındaki Uygulamaları. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 4(1)

  59. Aktaş, F., Çeken, C., & Erdemli̇, Y. E. (2015). Transmission of physiological signals with quality of service support by using wireless body area networks. In: Medical Technologies National Conference (TIPTEKNO), 2015 (pp. 1–4). IEEE.

  60. Luo, J., Chen, Y., Tang, K., & Luo, J. (2009). Remote monitoring information system and its applications based on the Internet of Things. In: BioMedical Information Engineering, 2009. FBIE 2009. International Conference on Future (pp. 482–485). IEEE.

  61. Sokullu, R., Akkas, M. A., & Çetin, H. E. (2010). Wireless patient monitoring system. In: Sensor Technologies and Applications (SENSOR COMM), 2010 4th International Conference on (pp. 179–184). IEEE.

  62. Akyildiz, I. F., Pierobon, M., Balasubramaniam, S., & Koucheryavy, Y. (2015). The internet of bio-nano-things. IEEE Communications Magazine, 53(3), 32–40.

    Article  Google Scholar 

  63. Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., & Arima, K. (2005). Molecular communication for nano-machines using intercellular calcium signaling. In: Nano-technology, 2005. 5th IEEE Conference on (pp. 478–481). IEEE.

  64. Giné, L. P., & Akyildiz, I. F. (2009). Molecular communication options for long range nano-networks. Computer Networks, 53(16), 2753–2766.

    Article  Google Scholar 

  65. Atakan, B. & Akan, O. B. (2007). An information theoretical approach for molecular communication. In: Bio-Inspired Models of Network, Information and Computing Systems, 2007. Bionetics 2007. 2nd (pp. 33–40). IEEE.

  66. Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V., & Shuai, J. (2012). Molecular communication and networking: Opportunities and challenges. IEEE Transactions on Nano-bioscience, 11(2), 135–148.

    Article  Google Scholar 

  67. Miraz, M. H., Ali, M., Excell, P. S., & Picking, R. (2018). Internet of nano-things, things and everything: Future growth trends. Future Internet, 10, 68. https://doi.org/10.3390/fi10080068

    Article  Google Scholar 

  68. Sicari, S., Rizzardi, A., Piro, G., Coen-Porisini, A., & Grieco, L. A. (2019). Beyond the smart things: Towards the definition and the performance assessment of a secure architecture for the Internet of Nano-Things. Computer Networks, 162, 106856.

    Article  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Alper Akkaş.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaş, M.A., Sokullu, R. Wıreless Communıcatıons Beyond 5 g: Teraherzwaves, Nano-Communıcatıons and the Internet of Bıo-Nano-Thıngs. Wireless Pers Commun 126, 3543–3568 (2022). https://doi.org/10.1007/s11277-022-09878-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09878-6

Keywords

Navigation