Skip to main content
Log in

Evaluation of Seasonal Variability of First-Order Ionospheric Delay Correction at L5 and S1 Frequencies Using Dual-Frequency NavIC System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

For the precise positioning applications it is important to determine and eliminate the positioning error introduced by various sources such as the ionosphere. To develop a standalone precise navigation system, India has launched the seven satellite constellations for NavIC (Navigation with Indian Constellation) system which can provide precision positioning over India and surrounded landmass. Since the ionospheric delay depends on the frequency of the satellite signal and NavIC systems work at different frequencies L5 and S1 than Global Positioning System (GPS) at L1 and L2, it is not possible to use the GPS data-driven study for NavIC based location calculations directly. Thus there is a need for a specialized ionospheric study for NavIC systems. In addition, the ionospheric delay is directly proportional to Slant Total Electron Content (STEC) which is dependent upon diurnal and seasonal solar activity. To achieve accurate positioning facilities, there is also a need for evaluation for seasonal variability of ionospheric delay correction for NavIC receivers. This paper deals with the STEC estimation; it's smoothing, and removal of instrumental biases from STEC. The determined true STEC has been used to determine first-order ionospheric delay correction at L5 and S1 frequencies. The delay correction at S1 has been found less (2–7 m) as compared to L5 (10–30 m). Furthermore, the seasonal variability of ionospheric delay has been analyzed using about 19 months of data (from June 2017 to December 2018) and found that the ionospheric delay follows unique seasonal characteristics which can be utilized for delay modeling. It has been also observed that the geostationary satellites of the NavIC system are more appropriate than geosynchronous satellites for ionospheric related studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

According to the undertaking signed with SAC, this data is the property of SAC and hence can not be shared.

Code availability

According to the undertaking signed with SAC, this data is the property of SAC and hence can not be shared.

References

  1. Global Positioning System: Theory and Applications, Volume II. (1996). In Global Positioning System: Theory and Applications, Volume II. https://doi.org/10.2514/4.866395

  2. Bhardwaj, S. C., Shekhar, S., Vidyarthi, A., & Prakash, R. (2020). Satellite Navigation and Sources of Errors in Positioning: A Review (pp. 43–50). Dehradun, India: IEEE. https://doi.org/10.1109/icaccm50413.2020.9212941

  3. Hernández-Pajares, M., Juan, J. M., Sanz, J., Aragón-Àngel, À., García-Rigo, A., Salazar, D., & Escudero, M. (2011). The ionosphere: Effects, GPS modeling and the benefits for space geodetic techniques. Journal of Geodesy, 85(12), 887–907. https://doi.org/10.1007/s00190-011-0508-5

    Article  Google Scholar 

  4. Jakowski, N., Mayer, C., Hoque, M. M., & Wilken, V. (2011). Total electron content models and their use in ionosphere monitoring. Radio Science, 46(5), 1–11. https://doi.org/10.1029/2010RS004620

    Article  Google Scholar 

  5. Dow, J. M., Neilan, R. E., & Rizos, C. (2009). The International GNSS service in a changing landscape of global navigation satellite systems. Journal of Geodesy, 83(3–4), 191–198. https://doi.org/10.1007/s00190-008-0300-3

    Article  Google Scholar 

  6. Suryanarayana Rao, K. N. (2007). GAGAN-the Indian satellite based augmentation system. Indian Journal of Radio and Space Physics, 36(4), 293–302.

    Google Scholar 

  7. Sunda, S., Sridharan, R., Vyas, B. M., Khekale, P. V., Parikh, K. S., Ganeshan, A. S., Sudhir, C. R., Satish, S. V., Bagiya, M. S., & Bagiya, M. S. (2015). Satellite-based augmentation systems: A novel and cost-effective tool for ionospheric and space weather studies. Space Weather, 13(1), 6–15. https://doi.org/10.1002/2014SW001103

    Article  Google Scholar 

  8. Acharya, R., Nagori, N., Jain, N., Sunda, S., Regar, S., Sivaraman, M. R., & Bandopadhyay, K. (2007). Ionospheric studies for the implementation of GAGAN. Indian Journal of Radio and Space Physics, 36(5), 394–404.

    Google Scholar 

  9. Shukla, A. K., Shinghal, P., Sivaraman, M. R., & Bandyopadhyay, K. (2009). Comparative analysis of the effect of ionospheric delay on user position accuracy using single and dual frequency gps receivers over indian region. Indian Journal of Radio and Space Physics, 38(1), 57–61.

    Google Scholar 

  10. VenkataRatnam, D., Sarma, A. D., Satya Srinivas, V., & Sreelatha, P. (2011). Performance evaluation of selected ionospheric delay models during geomagnetic storm conditions in low-latitude region. Radio Science, 46(3), 4–9. https://doi.org/10.1029/2010RS004592

    Article  Google Scholar 

  11. Sivavaraprasad, G., & VenkataRatnam, D. (2017). Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station. Advances in Space Research, 60(2), 475–490. https://doi.org/10.1016/j.asr.2017.01.031

    Article  Google Scholar 

  12. Montenbruck, O., Steigenberger, P., & Riley, S. (2015). IRNSS orbit determination and broadcast ephemeris assessment. Institute of Navigation International Technical Meeting 2015, ITM 2015, (c), pp. 185–193.

  13. Zaminpardaz, S., Teunissen, P. J. G., & Nadarajah, N. (2016). IRNSS stand-alone positioning: First results in Australia. Journal of Spatial Science, 61(1), 5–27. https://doi.org/10.1080/14498596.2016.1142398

    Article  Google Scholar 

  14. Mruthyunjaya, L., & Ramasubramanian, R. (2017). IRNSS Signal in Space ICD for Standard Positioning System, Version1.1. Retrieved from http://www.isro.gov.in/irnss-programme/

  15. Ayyagari, D., Chakraborty, S., Das, S., Shukla, A., Paul, A., & Datta, A. (2020). Performance of NavIC for studying the ionosphere at an EIA region in India. Advances in Space Research, 65(6), 1544–1558. https://doi.org/10.1016/j.asr.2019.12.019

    Article  Google Scholar 

  16. Rethika, T., Mishra, S., Nirmala, S., Rathnakara, S. C., & Ganeshan, A. S. (2013). Single frequency ionospheric error correction using coefficients generated from regional ionospheric data for IRNSS. Indian Journal of Radio & Space Physics, 42.

  17. Desai, M. V., & Shah, S. N. (2018). The GIVE ionospheric delay correction approach to improve positional accuracy of NavIC/IRNSS single-frequency receiver. Current Science, 114(08), 1665. https://doi.org/10.18520/cs/v114/i08/1665-1676

    Article  Google Scholar 

  18. Desai, M. V., & Shah, S. N. (2019). Estimation of ionospheric delay of NavIC/IRNSS signals using the Taylor Series expansion. Journal of Space Weather and Space Climate, 9, A23. https://doi.org/10.1051/swsc/2019023

    Article  Google Scholar 

  19. Sinha, S., Bhardwaj, S. C., Vidyarthi, A., Jassal, B. S., & Shukla, A. K. (2019). Ionospheric Scintillation analysis using ROT and ROTI for Slip Cycle Detection. In 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019 (pp. 461–466). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ISCON47742.2019.9036215

  20. Hager, B. H., King, R. W., & Murray, M. H. (1991). System global positioning.

  21. Bhardwaj, S. C., Vidyarthi, A., Jassal, B. S., & Shukla, A. K. (2021). Investigation of ionospheric total electron content (tec) during summer months for ionosphere modeling in indian region using dual-frequency navic system. In D. Gupta, A. Khanna, S. Bhattacharyya, A. E. Hassanien, S. Anand, & A. Jaiswal (Eds.), Advances in intelligent systems and computing (Vol. 1166, pp. 83–91). London: Springer.

    Google Scholar 

  22. Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J., & Runge, T. F. (1998). A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science, 33(3), 565–582. https://doi.org/10.1029/97RS02707

    Article  Google Scholar 

  23. Coster, A. J., Gaposchkin, E. M., & Thornton, L. E. (1992). Real-time ionospheric monitoring system using GPS. Navigation, 39(2), 191–204. https://doi.org/10.1002/j.2161-4296.1992.tb01874.x

    Article  Google Scholar 

  24. Wilson, B. D., & Mannucci, A. J. (1993). Instrumental Biases in Ionospheric Measurements Derived from GPS Data. In Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), pp. 1343–1351.

  25. Arikan, F., Nayir, H., Sezen, U., & Arikan, O. (2008). Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Science, 43(4), 1–13. https://doi.org/10.1029/2007RS003785

    Article  Google Scholar 

  26. Sunehra, D. (2016). TEC and instrumental bias estimation of GAGAN station using Kalman filter and SCORE algorithm. Positioning, 07(01), 41–50. https://doi.org/10.4236/pos.2016.71004

    Article  Google Scholar 

  27. Zhang, D. H., Zhang, W., Li, Q., Shi, L. Q., Hao, Y. Q., & Xiao, Z. (2010). Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes. Annales Geophysicae, 28(8), 1571–1580. https://doi.org/10.5194/angeo-28-1571-2010

    Article  Google Scholar 

  28. Maheshwari, M., Nirmala, S., Kavitha, S., & Ratanakara, S. C. (2019). Kalman filter based estimation of differential hardware biases with triangular interpolation technique for IRNSS. Advances in Space Research, 63(2), 1051–1064. https://doi.org/10.1016/j.asr.2018.09.031

    Article  Google Scholar 

  29. Siva Krishna, K., & Ratnam, D. V. (2020). Determination of NavIC differential code biases using GPS and NavIC observations. Geodesy and Geodynamics, 11(2), 97–105. https://doi.org/10.1016/j.geog.2020.01.001

    Article  Google Scholar 

  30. Bhardwaj, S. C., Vidyarthi, A., Jassal, B. S., & Shukla, A. K. (2020). Estimation of temporal variability of differential instrumental biases of NavIC Satellites and receiver using Kalman filter. Radio Science. https://doi.org/10.1029/2019RS006886

    Article  Google Scholar 

  31. Jiang, H., Wang, Z., An, J., Liu, J., Wang, N., & Li, H. (2018). Influence of spatial gradients on ionospheric mapping using thin layer models. GPS Solutions. https://doi.org/10.1007/s10291-017-0671-0

    Article  Google Scholar 

  32. Sinha, S., Mathur, R., Bharadwaj, S. C., Vidyarthi, A., Jassal, B. S., & Shukla, A. K. (2018). Estimation and smoothing of tec from navic dual frequency data. In 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018, pp. 1–5. https://doi.org/10.1109/CCAA.2018.8777665

  33. Li, J., & Jin, S. (2016). Second-order ionospheric effects on ionospheric electron density estimation from GPS Radio Occultation. In International Geoscience and Remote Sensing Symposium (IGARSS), 2016-Novem, pp. 3952–3955. https://doi.org/10.1109/IGARSS.2016.7730027

  34. Bhardwaj, S. C., Vidyarthi, A., Jassal, B. S., & Shukla, A. K. (2018). Study of temporal variation of vertical TEC using NavIC data. In 2017 International Conference on Emerging Trends in Computing and Communication Technologies, ICETCCT 2017 (Vol. 2018-Janua, pp. 1–5). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICETCCT.2017.8280317

  35. Bharadwaj, S. C., & Vidyarthi, A. (1990). Process of detection, determination and correction cycle slip error : A review.

  36. Komjathy, A. (1997). Global ionospheric total electron content mapping using the global positioning system. Engineering, 188, 248. http://www2.unb.ca/gge/Pubs/TR188.pdf

  37. Bagiya, M. S., Joshi, H. P., Iyer, K. N., Aggarwal, M., Ravindran, S., & Pathan, B. M. (2009). TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Annales Geophysicae, 27(3), 1047–1057. https://doi.org/10.5194/angeo-27-1047-2009

    Article  Google Scholar 

  38. Willmore, A. P. (1970). Electron and ion temperatures in the ionosphere. Space Science Reviews, 11(5), 607–670. https://doi.org/10.1007/bf00177027

    Article  Google Scholar 

  39. Chauhan, V., Singh, O. P., & Singh, B. (2011). Diurnal and seasonal variation of GPS-TEC during a low solar activity period as observed at a low latitude station Agra. Indian Journal of Radio and Space Physics, 40(1), 26–36.

    Google Scholar 

  40. Singh, A. K., Sardar, N., Rizvi, S., Rathore, S., & Vijay, S. K. (2013). Nighttime enhancement of ionospheric parameters. Indian Journal of Radio and Space Physics, 42(4), 240–250.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to SAC, Indian Space Research Organization (ISRO), Ahmedabad, India for providing the necessary funds and NavIC receiver to carry out this research work. According to the undertaking signed with SAC, this data is the property of SAC and hence cannot be shared.

Funding

This work is supported by the Space Applications Center (SAC), Indian Space Research Organization (ISRO), Ahmedabad, India under NavIC—GAGAN Utilization Program (Project ID: NGP: 9).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Sharat Chandra Bhardwaj.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, S.C., Vidyarthi, A., Jassal, B.S. et al. Evaluation of Seasonal Variability of First-Order Ionospheric Delay Correction at L5 and S1 Frequencies Using Dual-Frequency NavIC System. Wireless Pers Commun 126, 3345–3366 (2022). https://doi.org/10.1007/s11277-022-09868-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09868-8

Keywords

Navigation