Skip to main content
Log in

Manifold Preserving Features and Regression for Semantic Labelling in High Dimensional Images

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes an combined method for manifold preservation and Subspace Eigenvectors(SE) based regression in high dimensional (HD) images. We studied semantic labelling of HD images by using regression where partially labelled samples are provided. The first phase is rest on a weighted graph based Subspace operation which properly creates and fuses the external knowledge of labelled information. In earlier literature, edge weight matrix create the Laplace graph from quite high dimensional dataset that includes spectral information. An addition to Laplace Eigenvector method, an other method that includes spatial knowledge is termed as Subspace Eigenvectors(SE). Afterwards, abbreviated data set is projected in identified subspaces with a Bayesian approach having partially labelled training samples. The proposed method is a fusion of manifold subspace with regression for pixel diagnostics based semantic labelling and the provisional study of other predictive machine learning algorithms(MLA’s) that are trained with limited number of labelled training sets and are tested on immense amount of data. The results demonstrate that our analysis is clearly revealing the complicated behaviour of high dimension(HD) image experience in lower dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abed-Meraim, K., Loubaton, P., & Moulines, E. (1997). A subspace algorithm for certain blind identification problems. IEEE Transactions on Information Theory, 43(2), 499–511. https://doi.org/10.1109/18.556108

    Article  MATH  Google Scholar 

  2. Aubry, M., Schlickewei, U., Cremers, D. (2011). The wave kernel signature: A quantum mechanical approach to shape analysis. In: 2011 IEEE International conference on computer vision workshops (ICCV Workshops), pp 1626–1633, 10.1109/ICCVW.2011.6130444

  3. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396. https://doi.org/10.1162/089976603321780317

    Article  MATH  Google Scholar 

  4. Belkin, M., & Niyogi, P. (2008). Towards a theoretical foundation for laplacian-based manifold methods. Journal of Computer and System Sciences 74(8), 1289–1308. https://doi.org/10.1016/j.jcss.2007.08.006. http://www.sciencedirect.com/science/article/pii/S0022000007001274, learning Theory 2005.

  5. Bernstein, M., Silva, V.D., Langford, J.C., Tenenbaum, J.B. (2000). Graph approximations to geodesics on embedded manifolds

  6. Chouhan, S. S., Kaul, A., & Singh, U. P. (2018). Soft computing approaches for image segmentation: A survey. Multimedia Tools and Applications, 77(21), 28483–28537. https://doi.org/10.1007/s11042-018-6005-6

    Article  Google Scholar 

  7. Coifman, R.R., Lafon, S. (2006). Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions. Applied and Computational Harmonic Analysis 21(1):31 – 52, https://doi.org/10.1016/j.acha.2005.07.005, http://www.sciencedirect.com/science/article/pii/S1063520306000522, special Issue: Diffusion Maps and Wavelets

  8. Czaja, W., & Ehler, M. (2013). Schroedinger eigenmaps for the analysis of biomedical data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(5), 1274–1280. https://doi.org/10.1109/TPAMI.2012.270

    Article  Google Scholar 

  9. David, B., & Gillis, J. H. B. (2012). Hyperspectral image segmentation using spatial-spectral graphs. https://doi.org/10.1117/12.919743

    Article  Google Scholar 

  10. Ding, X., Hu, R., He, Z., Liang, C., & Wang, Z. (2021). Face hallucination based on degradation analysis for robust manifold. Neurocomputing. https://doi.org/10.1016/j.neucom.2021.10.087., https://www.sciencedirect.com/science/article/pii/S0925231221016180

  11. Donoho, D. L., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the national academy of sciences, 100(10), 5591–5596. http://www.pnas.org/content/100/10/5591

  12. Du, B., & Zhang, L. (2014). Target detection based on a dynamic subspace. Pattern Recognition, 47(1), 344–358.

  13. Vsk, G., & S V,. (2016). Clustering based band selection for endmember extraction using simplex growing algorithm in hyperspectral images. Multimedia Tools and Applications, 76(6), 8355–8371. https://doi.org/10.1007/s11042-016-3420-4

  14. Xekelaki, E., Galambos, J., Simonelli, G. (1996). Bonferroni-type inequalities with applications 92

  15. Geman, S., Geman, D. (1984). Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6(6): 721–741, 10.1109/TPAMI.1984.4767596

  16. Hadley, S. W., Mark, B. L., & Vannelli, A. (1992). An efficient eigenvector approach for finding netlist partitions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(7), 885–892. https://doi.org/10.1109/43.144852

    Article  Google Scholar 

  17. Hong, J. (2019). A multichannel subspace approach with signal presence probability for speech enhancement. Multidimensional Systems and Signal Processing, 30(4), 2045–2058. https://doi.org/10.1007/s11045-019-00640-z

    Article  Google Scholar 

  18. Hong, J. (2019). A multichannel subspace approach with signal presence probability for speech enhancement. Multidimensional Systems and Signal Processing, 30(4), 2045–2058. https://doi.org/10.1007/s11045-019-00640-z

    Article  Google Scholar 

  19. Huang, H., Shi, G., He, H., Duan, Y., Luo, F. (2019). Dimensionality reduction of hyperspectral imagery based on spatial-spectral manifold learning. IEEE Transactions on Cybernetics pp 1–13

  20. Imbiriba, T., Bermudez, J. C. M., Richard, C., & Tourneret, J. (2016). Nonparametric detection of nonlinearly mixed pixels and endmember estimation in hyperspectral images. IEEE Transactions on Image Processing, 25(3), 1136–1151. https://doi.org/10.1109/TIP.2015.2509258

    Article  MathSciNet  MATH  Google Scholar 

  21. Indyk, P. (2000). Dimensionality reduction techniques for proximity problems. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp 371–378

  22. Ishibashi, H., Higa, K., & Furukawa, T. (2022). Multi-task manifold learning for small sample size datasets. Neurocomputing, 473, 138–157.

  23. J Benedetto JDTDKDDG W Czaja (2012) Integration of heterogeneous data for classification in hyperspectral satellite imagery. 10.1117/12.919236

  24. Kayabol, K. (2020). Approximate sparse multinomial logistic regression for classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 490–493. https://doi.org/10.1109/TPAMI.2019.2904062

    Article  Google Scholar 

  25. Keshava, N., & Mustard, J. F. (2002). Spectral unmixing. IEEE Signal Processing Magazine, 19(1), 44–57. https://doi.org/10.1109/79.974727

    Article  Google Scholar 

  26. Krishnamurthy, S., Ramakrishnan, K.R. (2016). Image-guided depth map upsampling using normalized cuts-based segmentation and smoothness priors. In: 2016 IEEE International conference on image processing (ICIP), pp 554–558, 10.1109/ICIP.2016.7532418

  27. Krishnapuram, B., Carin, L., Figueiredo, M. A. T., & Hartemink, A. J. (2005). Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 957–968. https://doi.org/10.1109/TPAMI.2005.127

    Article  Google Scholar 

  28. Krobba, A., Debyeche, M., & Selouani, S. A. (2020). Mixture linear prediction gammatone cepstral features for robust speaker verification under transmission channel noise. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-020-08748-2

    Article  Google Scholar 

  29. Li, J., Bioucas-Dias, J. M., & Plaza, A. (2012). Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 50(3), 809–823. https://doi.org/10.1109/TGRS.2011.2162649

    Article  Google Scholar 

  30. Li, S. (2001). Markov random field modeling in image analysis. London: Springer.

    Book  Google Scholar 

  31. Li, Y., Xie, T., Wang, P., Wang, J., Liu, S., Zhou, X., & Zhang, X. (2018). Joint spectral-spatial hyperspectral image classification based on hierarchical subspace switch ensemble learning algorithm. Applied Intelligence, 48(11), 4128–4148. https://doi.org/10.1007/s10489-018-1200-8

    Article  Google Scholar 

  32. Liang, J., Lai, R., Wong, T.W., Zhao, H. (2012). Geometric understanding of point clouds using laplace-beltrami operator. In: 2012 IEEE conference on computer vision and pattern recognition, pp 214–221, 10.1109/CVPR.2012.6247678

  33. N Vapnik V (1999) An overview of statistical learning theory. ieee trans neural netw 10: 988-999

  34. Nathan D Cahill DWM Wojciech Czaja (2014) Schroedinger eigenmaps with nondiagonal potentials for spatial-spectral clustering of hyperspectral imagery. 10.1117/12.2050651

  35. Nathan D Cahill PSW Selene E Chew (2015) Spatial-spectral dimensionality reduction of hyperspectral imagery with partial knowledge of class labels. 10.1117/12.2177139

  36. Ng, A.Y., Jordan, M.I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in Neural Information Processing Systems 14, MIT Press, pp 841–848

  37. Nishii, R., Kusanobu, S., Nakaoka, N. (1997). Hughes phenomenon in the spatial resolution enhancement of low resolution images and derivation of selection rule for high resolution images. In: IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development, vol 2, pp 649–651 vol.2, 10.1109/IGARSS.1997.615212

  38. Oja, E .(1984). New Aspects on the subspace methods of pattern recognition.

  39. Patle, A., Chouhan, D.S. (2013). Svm kernel functions for classification. In: 2013 International conference on advances in technology and engineering (ICATE), pp 1–9, 10.1109/ICAdTE.2013.6524743

  40. Prakash, M., & Murty, M. (1996). Extended subspace methods of pattern recognition. Pattern Recognition Letters, 17(11), 1131–1139.

  41. Prasad, S., & Bruce, L. M. (2008). Limitations of principal components analysis for hyperspectral target recognition. IEEE Geoscience and Remote Sensing Letters, 5(4), 625–629. https://doi.org/10.1109/LGRS.2008.2001282

    Article  Google Scholar 

  42. Schölkopf, B., Smola, A., Smola, E., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299–1319.

    Article  Google Scholar 

  43. Seo, S., Chung, M. K., & Vorperian, H. K. (2010). Heat kernel smoothing using laplace-beltrami eigenfunctions. In T. Jiang, N. Navab, J. P. W. Pluim, & M. A. Viergever (Eds.), Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010 (pp. 505–512). Heidelberg: Springer, Berlin Heidelberg, Berlin.

    Chapter  Google Scholar 

  44. Shi, J., Malik, J. (1997). Normalized cuts and image segmentation. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 731–737, 10.1109/CVPR.1997.609407

  45. Song, W., Wang, L., Liu, P., & Choo, K. K. R. (2018). Improved t-SNE based manifold dimensional reduction for remote sensing data processing. Multimedia Tools and Applications, 78(4), 4311–4326. https://doi.org/10.1007/s11042-018-5715-0

    Article  Google Scholar 

  46. Spielman DA (2007) Spectral graph theory and its applications. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pp 29–38

  47. Srivastava, V., & Biswas, B. (2019). Cnn-based salient features in hsi image semantic target prediction. Connection Science. https://doi.org/10.1080/09540091.2019.1650330

    Article  Google Scholar 

  48. Srivastava, V., & Biswas, B. (2019). An efficient approach for dimension selection and classification in hsi images. Remote Sensing Letters, 10(9), 844–853. https://doi.org/10.1080/2150704X.2019.1623430

    Article  Google Scholar 

  49. Srivastava, V., & Biswas, B. (2019). An efficient feature fusion in HSI image classification. Multidimensional Systems and Signal Processing, 31(1), 221–247. https://doi.org/10.1007/s11045-019-00658-3

    Article  MATH  Google Scholar 

  50. Srivastava, V., & Biswas, B. (2019). A subspace regression and two phase label optimization for high dimensional image classification. Multimedia Tools and Applications, 79(9–10), 5897–5918. https://doi.org/10.1007/s11042-019-08477-1

    Article  Google Scholar 

  51. Srivastava, V., & Biswas, B. (2020). Deep cnn feature fusion with manifold learning and regression for pixel classification in hsi images. Journal of Experimental & Theoretical Artificial Intelligence, 32(2), 339–358. https://doi.org/10.1080/0952813X.2019.1647566

    Article  Google Scholar 

  52. Tao, L., Ip, H. H., Zhang, A., & Shu, X. (2016). Exploring canonical correlation analysis with subspace and structured sparsity for web image annotation. Image and Vision Computing, 54, 22–30. https://doi.org/10.1016/j.imavis.2016.06.008

    Article  Google Scholar 

  53. Torun, O., Yüksel, S.E. (2016). Hyperspectral image segmentation using normalized cuts. In: 2016 24th Signal processing and communication application conference (SIU), pp 1717–1720, 10.1109/SIU.2016.7496090

  54. Wan, Z., Yang, R., Huang, M., Liu, W., & Zeng, N. (2021). Eeg fading data classification based on improved manifold learning with adaptive neighborhood selection. Neurocomputing. https://doi.org/10.1016/j.neucom.2021.11.039. https://www.sciencedirect.com/science/article/pii/S092523122101715X

  55. Watanabe, S., Pakvasa, N. (1973). Subspace method to pattern recognition

  56. Wei, D., Shen, X., Sun, Q., Gao, X., & Ren, Z. (2022). Neighborhood preserving embedding on grassmann manifold for image-set analysis. Pattern Recognition, 122, 108335.

  57. Witkin AP, Tenenbaum JM (1983) On the role of structure in vision. In: Beck J, Hope B, , Rosenfeld A (eds) Human and machine vision, notes and reports in computer science and applied mathematics, Academic Press, pp 481 – 543, https://doi.org/10.1016/B978-0-12-084320-6.50022-0, https://www.sciencedirect.com/science/article/pii/B9780120843206500220

  58. Xiao, W., Huang, X., He, F., Silva, J., Emrani, S., & Chaudhuri, A. (2020). Online robust principal component analysis with change point detection. IEEE Transactions on Multimedia, 22(1), 59–68. https://doi.org/10.1109/TMM.2019.2923097

    Article  Google Scholar 

  59. Xu C, Pham D, Prince J (2000) Image segmentation using deformable models. Handbook of Medical Imaging: Volume 2. Medical Image Processing and Analysis

  60. Zhu, S.C., Lee, T.S., Yuille, A.L.(1995). Region competition: unifying snakes, region growing, energy/bayes/mdl for multi-band image segmentation. In: Proceedings of IEEE international conference on computer vision, pp 416–423, 10.1109/ICCV.1995.466909

  61. Zhu, W., & Peng, B. (2022). Manifold-based aggregation clustering for unsupervised vehicle re-identification. Knowledge-Based Systems, 235, 107624.

Download references

Acknowledgements

We would like to thank shai bagon for providing Graphcut (GC) optimization based C++ wrapper libraries. Open-source image data-sets are obtained from [Aviris-NASA (JPL); Gamba (Accessed: 2019-01-20)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V., Singh, S.S. & Biswas, B. Manifold Preserving Features and Regression for Semantic Labelling in High Dimensional Images. Wireless Pers Commun 126, 3119–3146 (2022). https://doi.org/10.1007/s11277-022-09856-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09856-y

Keywords

Navigation