Skip to main content
Log in

Analysis of Non-negative Block Orthogonal Matching Pursuit

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Compressed sensing has recently received considerable attention in signal and image processing, applied mathematics, and statistics. In this paper, the problem of sparse signal restoration in non-negative environment is studied. We propose a greedy algorithm for solving non-negative structure of sparse vector and analyze its theoretical performance based on mutual coherence. The feasibility of the proposed algorithm is verified by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

DataAvailability

The corresponding author may provide the data and material used in the manuscript subjected to reasonable request.

Code Availability

The code of the algorithm has been run in MATLAB software.

References

  1. Pati, Y., Rezaiifar, R., & Krishnaprasad, P. (1993). Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Signals, Systems and Computers, 1, 40–44.

    Article  Google Scholar 

  2. Mallat, S., & Zhifeng, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.

    Article  Google Scholar 

  3. Blumensath, T., & Davies, M. (2010). Normalized iterative hard thresholding: Guaranteed stability and performance. IEEE Journal of Selected Topics in Signal Processing, 4, 298–309.

    Article  Google Scholar 

  4. Chen, S., Billings, S., & Luo, W. (2007). Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 50, 1873–1896.

    Article  Google Scholar 

  5. Li, H., Wen, J., Xian, J., & Zhang, J. (2021). Nearly optimal number of iterations for sparse signal recovery with orthogonal multi-matching pursuit. Inverse Problem, 37, 115007.

    Article  MathSciNet  Google Scholar 

  6. Iordache, M., Bioucas-Dias, J., & Plaza, A. (2011). Sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 49(6), 2014–2039.

    Article  Google Scholar 

  7. Esser, E., Lou, Y., & Xin, J. (2013). A method for finding structured sparse solutions to non-negative least squares problems with applications. SIAM Journal on Imaging Sciences, 6(4), 2010–2046.

    Article  MathSciNet  Google Scholar 

  8. Bro, R., & Jong, S. (1997). A fast non-negativity-constrained least squares algorithm. Journal of Chemometrics, 11, 393–401.

    Article  Google Scholar 

  9. Petra, S., & Schnorr, C. (2014). Average case recovery analysis of tomographic compressive sensing. Linear Algebra and Its Applications, 441, 168–198.

    Article  MathSciNet  Google Scholar 

  10. Hogbom, J. (1974). Aperture synthesis with a non-regular distribution of interferometer baselines. Astronony Astrophys Suppl, 15, 417–426.

    Google Scholar 

  11. Cherni, A., Chouzenoux, E., & Delsuc, M. (2018). Fast dictionary-based approach for mass spectrometry data analysis (pp. 816–820). Calgary, Canada: IEEE ICASSP.

    Google Scholar 

  12. Virtanen, T., Gemmeke, J., & Raj, B. (2013). Active-set newton algorithm for over complete non-negative representations of audio. IEEE Transactions on Audio, Speech, and Language Processing, 21(11), 2277–2289.

    Article  Google Scholar 

  13. Bruckstein, A., Elad, M., & Zibulevsky, M. (2008). On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Xplore, 54(11), 4813–4820.

    MathSciNet  MATH  Google Scholar 

  14. Yaghoobi, M., Wu, D., & Davies, M. (2015). Fast non-negative orthogonal matching pursuit. IEEE Signal Processing Letters, 22(9), 1229–1233.

    Article  Google Scholar 

  15. Nguyen, T., Soussen, C., Idier, J., & Djermoune, E. (2019). Non-negative orthogonal greedy algorithms. IEEE Transactions on Signal Processing, 67, 5643–5658.

    Article  Google Scholar 

  16. Nguyen, T., Soussen, C., Idier, J., & Djermoune, E. (2021). K-step analysis of orthogonal greedy algorithms for non-negative sparse representations. Signal Processing, 108, 108185.

    Article  Google Scholar 

  17. Yaghoobi, M., & Davies, M. (2015). Fast non-negative orthogonal least squares. In 23rd European Signal Processing Conference, pp. 479–483

  18. Lu, Y., & Do, M. (2008). A theory for sampling signals from a union of subspaces. IEEE Transactions on Signal Processing, 56(6), 2334–2345.

    Article  MathSciNet  Google Scholar 

  19. Eldar, Y., & Mishali, M. (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory, 55(11), 5302–5316.

    Article  MathSciNet  Google Scholar 

  20. Eldar, Y., & Mishali, M. (2009). Block-sparsity and sampling over a union of subspaces. In: International conference on digital signal processing, pp. 1–8.

  21. Wright, J., Yang, A., Ganesh, A., Sastry, S., & Ma, Y. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227.

    Article  Google Scholar 

  22. Babakmehr, M., Simoes, M., Wakin, M., & Harirchi, F. (2016). Compressive sensing-based topology identification for smart grids. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2), 532–543.

    Google Scholar 

  23. Mishali, M., & Eldar, Y. (2009). Blind multiband signal reconstruction: Compressed sensing for analog signals. IEEE Transactions on Signal Processing, 57(3), 993–1009.

    Article  MathSciNet  Google Scholar 

  24. He, L., & Zhang, H. (2016). Iterative ensemble normalized cuts. Pattern Recognition Society, 55, 274–286.

    Article  Google Scholar 

  25. Eldar, Y., Kuppinger, P., & Bolcskei, H. (2010). Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing, 58(6), 3042–3054.

    Article  MathSciNet  Google Scholar 

  26. Wen, J., Chen, H., & Zhou, Z. (2018). An optimal condition for the block orthogonal matching pursuit algorithm. IEEE Access, 6, 38179–38185.

    Article  Google Scholar 

  27. Xia, C., Zhou, Z., Guo, C., Hao, Y., & Hou, C. (2021). A new analysis for support performance with block generalized orthogonal matching pursuit. Mathematical Problems in Engineering, 2021, 9438793.

    MathSciNet  Google Scholar 

  28. Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MathSciNet  Google Scholar 

  29. Blumensath, T., & Davies, M. (2009). Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Transactions on Information Theory, 55(4), 1872–1882.

    Article  MathSciNet  Google Scholar 

  30. Slawski, M., & Hein, M. (2013). Non-negative least squares for high dimensional linear models: Consistency and sparse recovery without regularization. Electronic Journal of Statistics, 7, 3004–3056.

    Article  MathSciNet  Google Scholar 

  31. Horn, R., & Johnson, C. (1996). Matrix analysis. Berlin: ISpringer.

    Google Scholar 

  32. Rauhut, H. (2010). Compressive sensing and structured random matrices. Theoretical Foundations and Numerical Methods for Sparse Recovery, 9, 1–92.

    MathSciNet  MATH  Google Scholar 

  33. Kim, D., & Haldar, J. (2016). Greedy algorithms for nonnegativity-constrained simultaneous sparse recovery. Signal Processing, 125, 274–289.

    Article  Google Scholar 

Download references

Funding

This study was partially supported by the National Natural Science Foundation of China (Grant Nos. 61907014, 61901160).

Author information

Authors and Affiliations

Authors

Contributions

Qi Chen proposed the NNBOMP algorithm and validated the validity of the algorithm. Haifeng Li analyzed the performance of the algorithm. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haifeng Li.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, Q. Analysis of Non-negative Block Orthogonal Matching Pursuit. Wireless Pers Commun 126, 1209–1222 (2022). https://doi.org/10.1007/s11277-022-09788-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09788-7

Keywords

Mathematics Subject Classification

Navigation