Skip to main content

Advertisement

Log in

CSRS-MAC: Cluster Based Synchronous Radio Scheduling MAC Protocol Using Carrier Sense Multiple Access for Wireless Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor network is gaining popularity due to its large-scale deployment in Internet of Things. The constraints of resources influence the protocol design at every layer. The management of radio scheduling takes place at physical layer by means of suitable design of MAC protocol to ensure optimal use of energy. The optimization takes place by synchronizing the carrier sensing multiple access mechanism. The traditional MAC protocol like IEEE-802.15.6 with CSMA is delays intensive as well as consumes more energy. Therefore, this paper introduces an analytical modeling of cross layer design approach of MAC protocol with clustering to ensure better network performance and prolonged lifetime with optimal use of energy. The average packet delay of the proposed MAC protocol as synchronous radio scheduling(ProP-SRS) reduces by 14 and 0.77% with respect to the S-MAC and Q-MAC respectively, whereas, The energy utilization for transferring per bit of data of the ProP-SRS reduces by 39.32 and 1.78% with respect to the S-MAC and Q-MAC respectively. The trend of the average packet delay for a MIAT = 4 with varying value of the slot exhibit lower trend for the Prop-SRS, whereas Q-MAC is immediately inferior and S-MAQ provide higher delay. The trend of the energy utilization per bit with varying value of the slot exhibit lower trend for the Prop-SRS, whereas Q-MAC is immediately inferior and S-MAQ comes higher energy per bit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhu, J., Zou, Y., & Zheng, B. (2017). Physical-Layer Security and Reliability Challenges for Industrial Wireless Sensor Networks. IEEE Access, 5, 5313–5320. https://doi.org/10.1109/ACCESS.2017.2691003

    Article  Google Scholar 

  2. Kaur, T., & Kumar, D. (2016) QoS mechanisms for MAC protocols in wireless sensor networks: a survey. IET Communications, 13 (14), 2045–2062. https://doi.org/10.1049/iet-com.2018.5110.

  3. Kumar, A., Zhao, M., Wong, K., Guan, Y. L., & Chong, P. H. J. (2018). A comprehensive study of IoT and WSN MAC protocols: Research issues, challenges and opportunities. IEEE Access, 6, 76228–76262. https://doi.org/10.1109/ACCESS.2018.2883391

    Article  Google Scholar 

  4. Li, Q., Zhang, N., Cheffena, M., & Shen, X. (2020). Channel-based optimal back-off delay control in delay-constrained industrial WSNs. IEEE Transactions on Wireless Communications, 19(1), 696–711. https://doi.org/10.1109/TWC.2019.2948156

    Article  Google Scholar 

  5. Zhang, R., Cheng, X., Cheng, X., & Yang, L. (2018). Interference-free graph based TDMA protocol for underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 67(5), 4008–4019. https://doi.org/10.1109/TVT.2017.2778752

    Article  Google Scholar 

  6. Cammarano, A., Presti, F. L., Maselli, G., Pescosolido, L., & Petrioli, C. (2015) Throughput-optimal cross-layer design for cognitive radio ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 26 (9), pp. 2599–2609. https://doi.org/10.1109/TPDS.2014.2350495

  7. Gui, L., et al. (2018). DV-Hop localization with protocol sequence based access. IEEE Transactions on Vehicular Technology, 67(10), 9972–9982. https://doi.org/10.1109/TVT.2018.2864270

    Article  Google Scholar 

  8. Petroccia, R., Petrioli, C., & Potter, J. (2018). Performance evaluation of underwater medium access control protocols: At-sea experiments. IEEE Journal of Oceanic Engineering, 43(2), 547–556. https://doi.org/10.1109/JOE.2017.2695759

    Article  Google Scholar 

  9. Iqbal, A., Kim, Y., & Lee, T. (2018). Access mechanism in wireless powered communication networks with harvesting access point. IEEE Access, 6, 37556–37567. https://doi.org/10.1109/ACCESS.2018.2851941

    Article  Google Scholar 

  10. Miao, G., Azari, A., & Hwang, T. (Nov. 2016). $E^{2}$ -MAC: Energy efficient medium access for massive M2M communications. IEEE Transactions on Communications, 64(11), 4720–4735. https://doi.org/10.1109/TCOMM.2016.2605086

    Article  Google Scholar 

  11. Ye, Q., & Zhuang, W. (2017). Distributed and adaptive medium access control for Internet-of-Things-enabled mobile networks. IEEE Internet of Things Journal, 4(2), 446–460. https://doi.org/10.1109/JIOT.2016.2566659

    Article  Google Scholar 

  12. Lin, C., Lin, K. C., & Chen, W. (2017) Channel-aware polling-based MAC protocol for body area networks: Design and analysis. IEEE Sensors Journal, 17(9), 2936–2948. https://doi.org/10.1109/JSEN.2017.2669526

  13. Cao, B., Li, M., Zhang, L., Li, Y., & Peng, M. (2020). How Does CSMA/CA affect the performance and security in wireless blockchain networks. IEEE Transactions on Industrial Informatics, 16(6), 4270–4280. https://doi.org/10.1109/TII.2019.2943694

    Article  Google Scholar 

  14. Akbar, M. S., Yu, H., & Cang, S. (2017). TMP: Tele-Medicine protocol for slotted 802.15.4 with duty-cycle optimization in wireless body area sensor networks. IEEE Sensors Journal, 17 (6), 1925–1936. https://doi.org/10.1109/JSEN.2016.2645612

  15. Choi, H., Lee, I., & Lee, H. (2015). Delay analysis of carrier sense multiple access with collision resolution. Journal of Communications and Networks, 17(3), 275–285. https://doi.org/10.1109/JCN.2015.000050

    Article  Google Scholar 

  16. Ortín, J., Cesana, M., Redondi, A. E. C., Canales, M., & Gállego, J. R. (2019). Analysis of unslotted IEEE 802.15.4 networks with heterogeneous traffic classes. IEEE Wireless Communications Letters, 8(2), 380–383. https://doi.org/10.1109/LWC.2018.2873347

    Article  Google Scholar 

  17. Li, F., Luo, J., Shi, G., & He, Y. (2017) ART: Adaptive fRequency-Temporal Co-Existing of ZigBee and WiFi. IEEE Transactions on Mobile Computing, 16(3), 662–674. https://doi.org/10.1109/TMC.2016.2573303

  18. Al-Janabi, T. A., & Al-Raweshidy, H. S. (2019). An energy efficient hybrid MAC protocol with dynamic sleep-based scheduling for high density IoT networks. IEEE Internet of Things Journal, 6(2), 2273–2287. https://doi.org/10.1109/JIOT.2019.2905952

    Article  Google Scholar 

  19. Petrosky, E. E., Michaels, A. J., & Ridge, D. B. (2019). Network scalability comparison of IEEE 802.15.4 and receiver-assigned CDMA. IEEE Internet of Things Journal, 6(4), 6060–6069. https://doi.org/10.1109/JIOT.2018.2884455

    Article  Google Scholar 

  20. Chen, H., Zhang, Z, Cui, L., & Huang, C. (2017). NoPSM: A concurrent MAC protocol over low-data-rate low-power wireless channel without PRR-SINR model. IEEE Transactions on Mobile Computing, 16(2), 435–452. https://doi.org/10.1109/TMC.2016.2547867

  21. Agarwal, V., DeCarlo, R. A., & Tsoukalas, L. H. (2017) Modeling energy consumption and lifetime of a wireless sensor node operating on a contention-based MAC protocol. IEEE Sensors Journal, 17 (16), 5153–5168. https://doi.org/10.1109/JSEN.2017.2722462

  22. Raza, M. Aslam, N., Le-Minh, H., Hussain, S., Cao, Y., & Khan, N. M. (2018). A critical analysis of research potential, challenges, and future directives in industrial wireless Ssensor networks. IEEE Communications Surveys & Tutorials, 20 (1), 39–95, Firstquarter 2018. https://doi.org/10.1109/COMST.2017.2759725

  23. Moulik, S., Misra, S., & Das, D. (2017). AT-MAC: Adaptive MAC-Frame Payload Tuning for Reliable Communication in Wireless Body Area Networks. IEEE Transactions on Mobile Computing, 16 (6), 1516–1529. https://doi.org/10.1109/TMC.2016.2598166

  24. Deb, S., Gupta, P., Nagaraj, K., & Srinivasan, V. (2015). An agile and efficient MAC for wireless access over TV whitespaces. IEEE Transactions on Mobile Computing, 14(1), 42–57. https://doi.org/10.1109/TMC.2014.2307316

    Article  Google Scholar 

  25. Maatouk, A., Assaad, M., & Ephremides, A. (2019). Energy efficient and throughput optimal CSMA scheme. IEEE/ACM Transactions on Networking, 27(1), 316–329. https://doi.org/10.1109/TNET.2019.2891018

    Article  Google Scholar 

  26. Asensio-Marco, C., & Beferull-Lozano, B. (2019). Adaptive medium access control for distributed processing in wireless sensor networks. IEEE Transactions on Signal and Information Processing over Networks, 5(1), 113–126. https://doi.org/10.1109/TSIPN.2018.2866324

    Article  Google Scholar 

  27. Zhuo, S., Shokri-Ghadikolaei, H., Fischione, C., & Wang, Z. (2019). Online congestion measurement and control in cognitive wireless sensor networks. IEEE Access, 7, 137704–137719. https://doi.org/10.1109/ACCESS.2019.2943011

    Article  Google Scholar 

  28. Haghighi, M. S., Xiang, Y., Varadharajan, V., & Quinn, B. (2015). A stochastic time-domain model for burst data aggregation in IEEE 802.15.4 wireless sensor networks. IEEE Transactions on Computers, 64(3), 627–639. https://doi.org/10.1109/TC.2013.2296773

    Article  MathSciNet  MATH  Google Scholar 

  29. Ma, Q., Liu, K., Cao, Z., Zhu, T., Miao, X., & Liu, Y. (2015). Opportunistic concurrency: A MAC protocol for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(7), 1999–2008. https://doi.org/10.1109/TPDS.2014.2329307

  30. Buratti, C., & Verdone, R. (2016). L-CSMA: A MAC protocol for Multihop Linear Wireless (Sensor) networks. IEEE Transactions on Vehicular Technology, 65(1), 251–265. https://doi.org/10.1109/TVT.2015.2391302

    Article  Google Scholar 

  31. Zhuo, S., Wang, Z., Song, Y., Wang, Z., & Almeida, L. (2016) A traffic adaptive multi-channel MAC protocol with dynamic slot allocation for WSNs. IEEE Transactions on Mobile Computing, 15 (7), 1600–1613. https://doi.org/10.1109/TMC.2015.2473852

  32. Sahoo, P. K., Pattanaik, S. R., & Wu, S. L. (2019). A novel synchronous MAC protocol for wireless sensor networks with performance analysis. Sensors, 19(24), 5394.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Deepa Mathew.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, K.D., Jones, A. CSRS-MAC: Cluster Based Synchronous Radio Scheduling MAC Protocol Using Carrier Sense Multiple Access for Wireless Sensor Network. Wireless Pers Commun 126, 209–229 (2022). https://doi.org/10.1007/s11277-022-09741-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09741-8

Keywords

Navigation