Skip to main content
Log in

Marine Propeller Design Using Evolving Chaotic Autonomous Particle Swarm Optimization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Due to many antithetical design parameters and complex fluctuating underwater conditions, marine propeller design has been one of the researchers’ challenging problems. Recently, meta-heuristic algorithms have become highly efficient solutions for solving complex engineering problems. However, due to the meta-heuristic algorithm’s stochastic nature, they are not reliable for industrial applications such as marine propeller design. Therefore, for the sake of having a robust meta-heuristic optimizer, In this paper, the conventional Particle Swarm Optimization (PSO) algorithm is improved by modified chaotic self-governing groups of particles (MGPSO). In order to approve the efficiency of the designed algorithm, this paper first investigates MGPSO’s performance on six challenging benchmark functions. Then, the MGPSO is used to design the marine propellers optimally. To this aim, two targets, viz., maximize the propeller efficiency and minimize its cavitation, which conflicts with each other, are considered the fitness function. In this regard, the propeller’s chord length and thickness are considered two main design parameters. The adverse effects of uncertainties in design parameters and operating conditions on efficiency and cavitation also are considered. In this regard, MGPSO is evaluated against the recently proposed benchmark algorithms such as ALO and BBO. The results indicated that MGPSO could find an exact true Pareto optimal front with a uniformly distributed approximation. The results also show that the propeller with 5 or 6 blades with rotation speeds between 180 to 190 RPM will have the best performance in the trade-off between efficiency and cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

The source code of the models can be available by request.

References

  1. Rutkay, B., & Laliberté, J. (2016). Design and manufacture of propellers for small unmanned aerial vehicles. Journal of Unmanned Vehicle Systems, 4(4), 228–245.

    Article  Google Scholar 

  2. Parsons, L. S. (1993). Management of Marine Fisheries in Canada Canadian Bulletin of Fisheries and Aquatic Sciences No. 225.

  3. Branke, J., Kaußler, T., & Schmeck, H. (2001). Guidance in evolutionary multi-objective optimization. Advances in Engineering Software, 32(6), 499–507.

    Article  MATH  Google Scholar 

  4. Hu, Y., Qing, J. X., Liu, Z. H., et al. (2021). Hovering efficiency optimization of the ducted propeller with weight penalty taken into account. Aerospace Science and Technology, 117, 106937.

  5. Mi, X., Tian, Y., & Kang, B. (2021). A hybrid multi-criteria decision making approach for assessing health-care waste management technologies based on soft likelihood function and D-numbers. Applied Intelligence, 1–20.

  6. Mosavi, M. R., Khishe, M., & Ebrahimi, E. (2016). Classification of sonar targets using OMKC, genetic algorithms and statistical moments.

  7. Carlton, J. S. (2012). Marine propeller & propulsion. Butterworth-Heinemann.

  8. Papanikolaou, A. (2014). Ship design: Methodologies of preliminary design. Springer.

    Book  Google Scholar 

  9. Castellini, P., & Santolini, C. (1998). Vibration measurements on blades of a naval propeller rotating in water with tracking laser vibrometer. Measurement, 24(1), 43–54.

    Article  Google Scholar 

  10. Lv, S., & Song, F. (2022). Particle swarm intelligence and the evolution of cooperation in the spatial public goods game with punishment. Applied Mathematics and Computation, 412, 126586.

  11. Fang, Z., Lu, J., Liu, F., Xuan, J., & Zhang, G. (2021). Open set domain adaptation: Theoretical bound and algorithm. IEEE Transaction on Neural Networks and Learning Systems, 32(10), 4309–4322.

    Article  MathSciNet  Google Scholar 

  12. Mosavi, M. R., Khishe, M., & Ghamgosar, A. (2016). Classification of sonar data set using neural network trained by Gray Wolf Optimization. Neural Network World, 26(4), 393.

    Article  Google Scholar 

  13. Mousavi, S. M. R., Khisheh, M., Aghababaei, M., & Mohammadzadeh, F. (2015). Approximation of active sonar clutter’s statistical parameters using array’s effective beam-width. Iranian Journal of Marine Science and Technology, 19(73), 11–22.

    Google Scholar 

  14. Zhong, L., Fang, Z., Liu, F., et al. (2021). Bridging the theoretical bound and deep algorithms for open set domain adaptation. IEEE Transaction on Neural Networks and Learning Systems, 1–15.

  15. Zhang, J., Shaw, A. D., Wang, C., et al. (2021). Aeroelastic model and analysis of an active camber morphing wing. Aerospace Science and Technology, 111, 106534.

  16. Benini, E. (2003). Multi-objective design optimization of B-screw series propellers using evolutionary algorithms. Marine Technology and SNAME News, 40(04), 229–238.

    Article  Google Scholar 

  17. Yang, L. (2020). Marine oil spill control based on discrete mathematical model. Journal of Coastal Research, 103, 387–391.

    Article  Google Scholar 

  18. Khishe, M., Mosavi, M. R., & Kaveh, M. (2017). Improved migration models of biogeography-based optimization for sonar dataset classification by using neural network. Applied Acoustics, 118, 15–29.

    Article  Google Scholar 

  19. Khishe, M., Aghababaee, M., & Mohammadzadeh, F. (2014). Active sonar clutter control by using array beamforming. Iranian Journal of Marine Science and Technology, 68(1), 1–6.

    Google Scholar 

  20. Skåland, E. K. (2016). The influence of the choice of propeller design tool on propeller performance. Master’s thesis, NTNU.

  21. Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.

    Article  Google Scholar 

  22. Tingqin, L., & Haixia, D. (2020). Automatic calculation method for mechanical load of full rotation crane ship based on flow function theory. Journal of Coastal Research, 103, 412–416.

    Article  Google Scholar 

  23. Hussein, B., & Moselhi, O. (2019). An evolutionary stochastic discrete time-cost trade-off method. Canadian Journal of Civil Engineering, 46(7), 581–600.

    Article  Google Scholar 

  24. Mahmoodabadi, M. J., Shahangian, M. M., & Nejadkourki, N. (2021). An optimal MRAC–ASMC scheme for robot manipulators based on the artificial bee colony. Transactions of the Canadian Society for Mechanical Engineering, (ja).

  25. Burton, P. J., Messier, C., Smith, D. W., & Adamowicz, W. L. (Eds.). (2003). Towards sustainable management of the boreal forest. NRC Research Press.

  26. Gursoy, F., & Gunnec, D. (2018). Influence maximization in social networks under deterministic linear threshold model. Knowledge-Based Systems, 161, 111–123.

    Article  Google Scholar 

  27. Aghdam, M. H., Ghasem-Aghaee, N., & Basiri, M. E. (2009). Text feature selection using ant colony optimization. Expert Systems with Applications, 36(3), 6843–6853.

    Article  Google Scholar 

  28. Moradi, P., & Rostami, M. (2015). Integration of graph clustering with ant colony optimization for feature selection. Knowledge-Based Systems, 84, 144–161.

    Article  Google Scholar 

  29. Paniri, M., Dowlatshahi, M. B., & Nezamabadi-Pour, H. (2020). MLACO: A multi-label feature selection algorithm based on ant colony optimization. Knowledge-Based Systems, 192, 105285.

  30. Ghimatgar, H., Kazemi, K., Helfroush, M. S., & Aarabi, A. (2018). An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowledge-Based Systems, 159, 270–285.

    Article  Google Scholar 

  31. Mosavi, M. R., & Khishe, M. (2017). Training a feed-forward neural network using particle swarm optimizer with autonomous groups for sonar target classification. Journal of Circuits, Systems and Computers, 26(11), 1750185.

    Article  Google Scholar 

  32. Afrakhteh, S., Mosavi, M. R., Khishe, M., & Ayatollahi, A. (2020). Accurate classification of EEG signals using neural networks trained by hybrid population-physic-based algorithm. International Journal of Automation and Computing, 17(1), 108–122.

    Article  Google Scholar 

  33. Ramezani, F., Lu, J., & Hussain, F. K. (2014). Task-based system load balancing in cloud computing using particle swarm optimization. International Journal of Parallel Programming, 42(5), 739–754.

    Article  Google Scholar 

  34. Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary computation, 3(2), 82–102.

    Article  Google Scholar 

  35. Tetko, I. V., Tanchuk, V. Y., & Luik, A. I. (1994). Application of an evolutionary algorithm to the structure-activity relationship. In Proceedings 3rd Annual Conference on Evolutionary Programming (pp. 109–119). NJ: J. World Scientific, River Edge.

  36. Song, S., Gao, S., Chen, X., Jia, D., Qian, X., & Todo, Y. (2018). AIMOES: Archive information assisted multi-objective evolutionary strategy for ab initio protein structure prediction. Knowledge-Based Systems, 146, 58–72.

    Article  Google Scholar 

  37. Akopov, A. S., Beklaryan, L. A., Thakur, M., & Verma, B. D. (2019). Parallel multi-agent real-coded genetic algorithm for large-scale black-box single-objective optimisation. Knowledge-Based Systems, 174, 103–122.

    Article  Google Scholar 

  38. Das, A. K., Das, S., & Ghosh, A. (2017). Ensemble feature selection using bi-objective genetic algorithm. Knowledge-Based Systems, 123, 116–127.

    Article  Google Scholar 

  39. Wolpert, D. H., & Macready, W. G. (1995). No free lunch theorems for search (Vol. 10). Technical Report SFI-TR-95-02-010, Santa Fe Institute.

  40. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39–43). IEEE.

  41. Mosavi, M. R., Khishe, M., & Akbarisani, M. (2017). Neural network trained by biogeography-based optimizer with chaos for sonar data set classification. Wireless Personal Communications, 95(4), 4623–4642.

    Article  Google Scholar 

  42. Kaveh, M., Khishe, M., & Mosavi, M. R. (2019). Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network. Analog Integrated Circuits and Signal Processing, 100(2), 405–428.

    Article  Google Scholar 

  43. Zorarpacı, E., & Özel, S. A. (2016). A hybrid approach of differential evolution and artificial bee colony for feature selection. Expert Systems with Applications, 62, 91–103.

    Article  Google Scholar 

  44. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.

    Article  Google Scholar 

  45. Cao, B., et al. (2021). RFID reader anticollision based on distributed parallel particle swarm optimization. IEEE Internet of Things Journal, 8, 3099–3107.

    Article  Google Scholar 

  46. Khishe, M., & Mohammadi, H. (2019). Passive sonar target classification using multi-layer perceptron trained by salp swarm algorithm. Ocean Engineering, 181, 98–108.

    Article  Google Scholar 

  47. Huo, W., Li, Z., Wang, J., et al. (2019). Multiple hydrological models comparison and an improved Bayesian model averaging approach for ensemble prediction over semi-humid regions. Stochastic Environmental Research and Risk Assessment, 33, 217–238.

    Article  Google Scholar 

  48. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.

    Article  Google Scholar 

  49. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.

    Article  Google Scholar 

  50. Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053–1073.

    Article  MathSciNet  Google Scholar 

  51. Khishe, M., & Safari, A. (2019). Classification of sonar targets using an MLP neural network trained by dragonfly algorithm. Wireless Personal Communications, 108(4), 2241–2260.

    Article  Google Scholar 

  52. Seyedali, M. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.

    Article  Google Scholar 

  53. Salimi, H. (2015). Stochastic fractal search: A powerful metaheuristic algorithm. Knowledge-Based Systems, 75, 1–18.

    Article  Google Scholar 

  54. Khishe, M., Mosavi, M. R., & Moridi, A. (2018). Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation. Applied Acoustics, 137, 121–139.

    Article  Google Scholar 

  55. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Let a biogeography-based optimizer train your multi-layer perceptron. Information Sciences, 269, 188–209.

    Article  MathSciNet  Google Scholar 

  56. Abedifar, V., Eshghi, M., Mirjalili, S., & Mirjalili, S. M. (2013). An optimized virtual network mapping using PSO in cloud computing. In 2013 21st Iranian Conference on Electrical Engineering (ICEE) (pp. 1–6). IEEE.

  57. Nguyen, L. S., Frauendorfer, D., Mast, M. S., & Gatica-Perez, D. (2014). Hire me: Computational inference of hirability in employment interviews based on nonverbal behavior. IEEE Transactions on Multimedia, 16(4), 1018–1031.

    Article  Google Scholar 

  58. Barakat, M., Lefebvre, D., Khalil, M., Druaux, F., & Mustapha, O. (2013). Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues. International Journal of Machine Learning and Cybernetics, 4(3), 217–233.

    Article  Google Scholar 

  59. Guo, Z. X., Wong, W. K., & Li, M. (2012). Sparsely connected neural network-based time series forecasting. Information Sciences, 193, 54–71.

    Article  Google Scholar 

  60. Csáji, B. C. (2001). Approximation with artificial neural networks. Faculty of Sciences, Etvs Lornd University, Hungary, 24(48), 7.

    Google Scholar 

  61. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  62. Hedayatzadeh, R., Salmassi, F. A., Keshtgari, M., Akbari, R., & Ziarati, K. (2010). Termite colony optimization: A novel approach for optimizing continuous problems. In 2010 18th Iranian Conference on Electrical Engineering (pp. 553–558). IEEE.

  63. Mirjalili, S., Lewis, A., & Sadiq, A. S. (2014). Autonomous particles groups for particle swarm optimization. Arabian Journal for Science and Engineering, 39(6), 4683–4697.

    Article  MATH  Google Scholar 

  64. Mirjalili, S., Mirjalili, S. M., & Yang, X. S. (2014). Binary bat algorithm. Neural Computing and Applications, 25(3), 663–681.

    Article  Google Scholar 

  65. Wang, G. G., Gandomi, A. H., & Alavi, A. H. (2013). A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes.

  66. Wang, G. G., Gandomi, A. H., & Alavi, A. H. (2014). An effective krill herd algorithm with migration operator in biogeography-based optimization. Applied Mathematical Modelling, 38(9–10), 2454–2462.

    Article  MathSciNet  MATH  Google Scholar 

  67. Bertschneider, H., Bosschers, J., Choi, G. H., Ciappi, E., Farabee, T., Kawakita, C., & Tang, D. (2014). Specialist committee on hydrodynamic noise. Final Report and Recommendations to the 27th ITTC. Copenhagen, Sweden, 45.

  68. Mousavi, S. M., Kaveh, M., & Khishe, M. (2016). Sonar Data Set Classification Using MLP Neural Network Trained By Modified Biogeography-Based Optimization. Iranian Journal of Marine Science and Technology, 20(78), 65–74.

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RK Investigation, Data Curation, Resources, Writing—Original Draft. VS Project administration, Formal analysis, Validation, Resources. MK Conceptualization, Supervision, Visualization, software. MKJ Writing- Reviewing and Editing.

Corresponding author

Correspondence to Vahid Shokri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, R., Shokri, V., Khishe, M. et al. Marine Propeller Design Using Evolving Chaotic Autonomous Particle Swarm Optimization. Wireless Pers Commun 125, 1653–1675 (2022). https://doi.org/10.1007/s11277-022-09625-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09625-x

Keywords

Navigation