Skip to main content
Log in

Wide Band Folded Coupled Line Power Divider Using Metamaterial for Mobile Application

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The power divider is a vital device, particularly in microwave communication systems. The Large expanding demand in mobile communication needs to have a single small power divider which caters all generations of mobiles ranging from 1 to 4 G. To satisfy this wide band requirement of the mobile communication this new work is proposed. The existing coupled-line Wilkinson power divider is operating in dual bands with center frequencies of 1.1 and 2.2 GHz. The proposed power divider improves bandwidth from 0.5 to 3.5 GHz by using metamaterial. Hexagonal metamaterial is used for wider bandwidth operation and folded coupled micro-strip line technology is used to reduce the size of power divider. SMD resistors are used to produce better isolation. The simulation is done by HFSS13.0. Its proto type is also fabricated and tested by using the Agilent VNA (Make: Agilent; Model: FieldFox N9923A). The measured results are in good agreement with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

My manuscript has no associated data.

References

  1. Lei, Wu., Sun, Z., Yilmaz, H., & Berroth., M. (2006). A dual-frequency Wilkinson power divider. IEEE Transaction on Microwave Theory and Techniques, 54(1), 278–284. https://doi.org/10.1109/tmtt.2005.860300

    Article  Google Scholar 

  2. Wu, L., Yilmaz, H., Bitzer, T., Pascht, A., & Berroth, M. (2005). A dual-frequency Wilkinson power divider: For a frequency and its first harmonic. IEEE Microwave and Wireless Components Letters, 15(2), 107–109. https://doi.org/10.1109/LMWC.2004.842848

    Article  Google Scholar 

  3. Yang, T., Chen, J.-X., Zhang, X. Y., & Xue, Q. (2008). A dual-band out-of-phase power divider. IEEE Microwave Wireless Component Letters, 18(3), 188–190. https://doi.org/10.1109/LMWC.2008.916800

    Article  Google Scholar 

  4. Yongle, Wu., Liu, Y., & Xue, Q. (2011). An analytical approach for a novel coupled-line dual-band Wilkinson power divider. IEEE Transactions on Microwave Theory and Techniques, 59(2), 286–294. https://doi.org/10.1109/tmtt.2010.2084096

    Article  Google Scholar 

  5. Lin, Z., & Chu, Q.-X. (2010). A novel approach to the design of dual- band power divider with variable power dividing ratio based on coupled-lines. Progress in Electromagnetics Research, 103, 271–284. https://doi.org/10.2528/PIER10012202

    Article  Google Scholar 

  6. Wang, X., Sakagami, I., Ma, Z., Mase, A., Yoshikawa, M., & Ichimura, M. (2015). Miniaturized dual-band Wilkinson power divider with self-compensation structure. IEEE Transactions on Components Packaging and Manufacturing Technology, 5(3), 389–397. https://doi.org/10.1109/tcpmt.2015.2402213

    Article  Google Scholar 

  7. Park, M.-J. (2009). Dual-band Wilkinson divider with coupled output port extensions. IEEE Transaction on Microwave Theory and Techniques, 57(9), 2232–2237. https://doi.org/10.1109/tmtt.2009.2027169

    Article  Google Scholar 

  8. Park, M.-J. (2009). Two-section cascaded coupled line Wilkinson power divider for dual-band applications. IEEE IEEE Microwave and Wireless Components Letters, 19(4), 188–190. https://doi.org/10.1109/LMWC.2009.2015482

    Article  Google Scholar 

  9. Dawar, P., & De, A. (2013). Bandwidth enhancement of RMPA using 2 segment labyrinth metamaterial at THz. Materials Sciences and Applications, 4, 579–588. https://doi.org/10.4236/msa.2013.410071

    Article  Google Scholar 

  10. Tseng, C.-H., & Chang, C.-L. (2008). Broadband quadrature power splitter using metamaterial transmission line. IEEE Microwave and Wireless Components Letters. https://doi.org/10.1109/lmwc.2007.911981

    Article  Google Scholar 

  11. Antoniades, M. A., & Eleftheriades., V. G. (2005). A broadband Wilkinson balun using microstrip metamaterial lines. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/lawp.2005.851005

    Article  Google Scholar 

  12. Castro, P. J., Barroso, J. J., & LeiteNeto, J. P. (2013). Experimental study on split-ring resonators with different slit widths. Journal of Electromagnetic Analysis and Applications, 5, 366–370. https://doi.org/10.4236/jemaa.2013.59058

    Article  Google Scholar 

  13. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(8), 4184–4187. https://doi.org/10.1103/physrevlett.84.4184

    Article  Google Scholar 

  14. Bilotti, F., Toscano, A., Vegni, L., Aydin, K., BoratayAlici, K., & Ozbay, E. (2007). Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions. IEEE Transactions on Microwave Theory and Techniques, 55(12), 2865–2872. https://doi.org/10.1109/TMTT.2007.909611

    Article  Google Scholar 

  15. Vélez, P., Durán-Sindreu, M., Fernández-Prieto, A., Bonache, J., Medina, F., & Martin, F. (2014). Compact dual-band differential power splitter with common-mode suppression and filtering capability based on differential-mode composite right / left-handed transmission-line metamaterials. IEEE Antennas and Wireless Propagation Letters, 13, 536–539. https://doi.org/10.1109/LAWP.2014.2311654

    Article  Google Scholar 

  16. Phanikumar, K. V., & Karthikeyan, S. S. (2015). A Compact 1.4 Lossless T-Junction power divider using open complementary split ring resonator. Radio Engineering, 24(3), 717–721. https://doi.org/10.13164/re.2015.0717

    Article  Google Scholar 

  17. Kholodnyak, D., Vorobev, E., Turgaliev, V., & Khalilova, E. (2015). Design of a dual-band Wilkinson power divider using metamaterial transmission lines. In SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Porto de Galinhas, Brazil. Doi:https://doi.org/10.1109/IMOC.2015.7369139

  18. Zhang, T., Che, W., Chen, H., & Feng, W. (2015). A compact four-way dual-band power divider using lumped elements. IEEE Microwave and Wireless Components Letters. https://doi.org/10.1109/lmwc.2014.2382681

    Article  Google Scholar 

  19. Wang, X., Sakagami, I., Ma, Z., Mase, A., Yoshikawa, M., & Ichimura, M. (2015). Miniaturized dual-band Wilkinson power divider with self-compensation structure. IEEE Transactions on Components Packaging and Manufacturing Technology. https://doi.org/10.1109/tcpmt.2015.2402213

    Article  Google Scholar 

  20. Mocanu, I. A., & Manoliu, L. (2019). Dual band metamaterial power divider with improved relative bandwidth for LTE applications. In IEEE 12th German microwave conference (GeMiC)—Stuttgart, Germany. doi: https://doi.org/10.23919/GEMIC.2019.8698192

  21. Jianqiang, Gu., Han, J., Xinchao, Lu., Singh, R., Tian, Z., Xing, Q., & Zhang, W. (2009). A close-ring pair terahertz metamaterial resonating at normal incidence. Optics Express. https://doi.org/10.1364/OE.17.020307

    Article  Google Scholar 

  22. Baskey, H. B., & Akhtar, M. J. (2013). A dual-band hexagonal ring based polarization-insensitive metamaterial absorber. IEEE MTT-S International Microwave and RF Conference - New Delhi, India. https://doi.org/10.1109/imarc.2013.6777706

    Article  Google Scholar 

  23. Majeed, F., & Thiel, D. V. (2016). An optimized circuit in plastic meander line antenna for 2.45 GHz applications. International Journal of Antennas and Propagation. https://doi.org/10.1155/2016/7398567

    Article  Google Scholar 

  24. Chen, M.-T., Wu, C.-H., Chang, P.-C., Liu, C.-C., Lin, H.-C., & Tang, C.-W. (2017). Design of a microstrip filtering power divider with a wide passband and broad stopband. In: IEEE/MTT-S international microwave symposium—IMS 2017—Honololu, HI, USA. doi:https://doi.org/10.1109/MWSYM.2017.8059032

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Sivaprakash.

Ethics declarations

Conflict of interest

All author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaprakash, S.C., Monika, K. & Sivanantha Raja, A. Wide Band Folded Coupled Line Power Divider Using Metamaterial for Mobile Application. Wireless Pers Commun 125, 685–697 (2022). https://doi.org/10.1007/s11277-022-09572-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09572-7

Keywords

Navigation