Skip to main content
Log in

A Hybrid Fractal Metamaterial Inspired Multiband Antenna for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper a multiband (hepta-band) antenna loaded with hybrid fractal structures and metamaterial cell (SRR/CSRR) is proposed to cover the wireless applications. Fabricated structure is realized on FR4 substrate with compact dimensions of 29.5 × 22 × 1.6 mm3. Antenna achieve seven resonant characteristics for wireless communication modes such as Upper L band, S band (WiMAX), C band (WLAN), C band (IEEE INSAT application), X band (terrestrial broadband, space communication and Radio Navigation (RN) application), Lower Ku band (direct broadcast satellite service), Middle Ku (band satellite communication operating band). An established radiation characteristics, gain and efficiency are identified regarding operating bands. Antenna achieve optimum peak gain 4.11 dBi and radiation efficiency of 84.63% at operating frequency regarding wireless standards. The average efficiency of proposed design is more than 70% for all the resonant modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Elsheakh, D. M., Elsadek, N., Abdallah, H. A., Iskander, E. A. F., & ElHennawy, M. F. (2010). Reconfigurable single and multiband inset feed microstrip patch antenna for wireless communication devices. Progress in Electromagnetic Research C, 12, 191–201.

    Article  Google Scholar 

  2. Bakariya, P. S., Dwari, S., Sarkar, M., & Mandal, M. K. (2015). Proximity-coupled microstrip antenna for bluetooth, WiMAX and WLAN applications. IEEE Antennas Wireless Propag Letters, 14, 755–758.

    Article  Google Scholar 

  3. Wu, R. Z., Wang, P., Zheng, Q., & Li, R. P. (2015). Compact CPW-fed triple band antenna for diversity applications. Electron Letters, 51, 735–736.

    Article  Google Scholar 

  4. Mehdipour, A., Sebak, A. R., Trueman, C. W., & Denidni, T. A. (2012). Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications. IEEE Antennas Wireless Propagation Letters, 11, 144–147.

    Article  Google Scholar 

  5. Cao, Y. F., Cheung, S. W., & Yuk, T. I. (2015). A multiband slot antenna for GPS/WiMAX/WLAN systems. IEEE Transactions on Antennas and Propagation, 63(3), 952–958.

    Article  MathSciNet  MATH  Google Scholar 

  6. Saraswat, R. K., & Kumar, M. (2015). A frequency band reconfigurable UWB antenna for high gain applications. Progress In Electromagnetics Research B, 64, 29–45.

    Article  Google Scholar 

  7. Samsuzzaman, M., Islam, T., Abd Rahman, N. H., Faruque, M. R. I., & Mandeep, J. S. (2014). Compact modified swastika shape patch antenna for WLAN/WiMAX applications. International Journal of Antennas and Propagation, 2014, 1–8.

    Google Scholar 

  8. Ali, T., Pathan, S., & Biradar, R. C. (2018). A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications. Microwave and Optical Technology Letters, 60, 79–85.

    Article  Google Scholar 

  9. Chaurasia, P., Kanaujia, B. K., Dwari, S., & Khandelwal, M. K. (2018). Design and analysis of seven-bands-slot-antenna with small frequency ratio for different wireless applications. International Journal of Electronics and Communications (AEÜ), 99, 100–109. https://doi.org/10.1016/j.aeue.2017.08.057

    Article  Google Scholar 

  10. Zhu, J., & Eleftheriades, G. V. (2009). Dual band metamaterial inspired small monopole antenna for WiFi applications. Electronics Letters, 45(22), 1104–1106.

    Article  Google Scholar 

  11. Xu, H. X., Wang, G. M., Lv, Y. Y., Qi, M. Q., Gao, X., & Ge, S. (2013). Multi frequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit. Progress In Electromagnetics Research, 137, 703–725.

    Article  Google Scholar 

  12. Alam, T., Samsuzzaman, M., Faruque, M. R. I., & Islam, M. T. (2016). A metamaterial unit cell inspired antenna for mobile wireless applications. Microwave and Optical Technology Letters, 58(2), 263–267.

    Article  Google Scholar 

  13. Daniel, S., Pandeeswari, R., & Raghavan, S. (2017). A compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications. AEU–International Journal of Electronics and Communications, 83, 88–94.

    Google Scholar 

  14. Rao, M. V., Madhav, B. T. P., Anil Kumar, T., & Nadh, B. P. (2018). Metamaterial inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications. AEU-International Journal of Electronics and Communications, 97, 229–241.

    Google Scholar 

  15. Anguera, J., Puente, C., Borja, C., & Soler, J. (2005). Fractal shaped antennas: A Review. Encyclopedia of RF and Microwave Engineering. Wiley Interscience.

  16. Chen, H. D., Yang, H. W., & Sim, C. Y. D. (2017). Single open-slot antenna for LTE/WWAN smartphone application. IEEE Transactions on Antennas and Propagation, 65(8), 4278–4282.

    Article  Google Scholar 

  17. Lee, S. H., Lim, Y., Yoon, Y. J., Hong, C. B., & Kim, H. I. (2010). Multiband folded slot antenna with reduced hand effect for handsets. IEEE Antennas Wireless Propagation Letters, 9, 674–677.

    Article  Google Scholar 

  18. Yuan, B., Cao, Y., & Wang, G. (2011). A miniaturized printed slot antenna for six-band operation of mobile handsets. IEEE Antennas Wireless Propagation Letters, 10, 854–857.

    Article  Google Scholar 

  19. Sharma, S. K., Mulchandani, J. D., Gupta, D., & Chaudhary, R. K. (2015). Triple band metamaterial inspired antenna using FDTD technique for WLAN/WiMAX applications. International Journal of RF and Microwave Computer Aided Engineering, 25(8), 688–695.

    Article  Google Scholar 

  20. Ali, T., & Biradar, R. C. (2017). A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11 N and IEEE 802.16 E. Microwave and Optical Technology Letters, 59(5), 1000–1006.

    Article  Google Scholar 

  21. Kukreja, J., Kumar, C. D., & Kumar, C. R. (2017). CPW fed miniaturized dual-band short-ended metamaterial antenna using modified split-ring resonator for wireless application. International Journal of RF and Microwave Computer-Aided Engineering, 27(8), 1–7.

    Article  Google Scholar 

  22. Saraswat, R. K., & Kumar, M. (2019). A metamaterial hepta-band antenna for wireless applications with specific absorption rate reduction. International Journal of RF Microwave Computer Aided Engineering, 29(10), 1–12.

    Google Scholar 

  23. Ali, T., Saadh, A. M., & Biradar, R. C. (2018). A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications. International Journal of Microwave and Wireless Technologies, 10(7), 826–834.

    Article  Google Scholar 

  24. Pandeeswari, R., & Raghavan, S. (2014). Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching. Microwave and Optical Technology Letters, 56(10), 2388–2392.

    Article  Google Scholar 

  25. Arora, C., Pattnaik, S. S., & Baral, R. N. (2015). SRR inspired microstrip patch antenna array. Progress in Electro-Magnetics Research C, 58, 89–96.

    Article  Google Scholar 

  26. Rajeshkumar, V., & Raghavan, S. (2015). SRR based polygon ring penta-band fractal antenna for GSM/WLAN/WiMAX/ITU band applications. Microwave and Optical Technology Letters, 57(6), 1301–1305.

    Article  Google Scholar 

  27. Elavarasi, C., & Shanmuganantham, T. (2018). Multiband SRR loaded Koch star fractal antenna. Alexandria Engineering Journal, 57, 1549–1555.

    Article  Google Scholar 

  28. Ahmed, B.H., Nornikman, H. (2013). Fractal microstrip antenna with Minkowski island split ring resonator for broad band application. In: IEEE International RF and Microwave Conference, pp. 214–218.

  29. Hu, J. R., & Li, J. S. (2014). Compact microstrip antennas using SRR structure ground plane. Microwave and Optical Technology Letters, 56(1), 117–120.

    Article  Google Scholar 

  30. Rajkumar, R., & UshaKiran, K. (2017). A metamaterial inspired compact open split ring resonator antenna for multiband operation. Wireless Personal Communications, 97, 951–965.

    Article  Google Scholar 

  31. Saraswat, R., & Kumar, M. (2016). Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Progress In Electromagnetics Research B, 65, 65–80.

    Article  Google Scholar 

  32. Saraswat, R. K., & Kumar, M. (2019). A vertex-fed hexa-band frequency reconfigurable antenna for wireless applications. International Journal of RF Microwave Computer Aided Engineering, 29(10), 1–13.

    Google Scholar 

  33. Liu, W. C., Wu, C. M., & Dai, Y. (2011). Design of triple-frequency microstrip-fed monopole antenna using defected ground structure. IEEE Transactions on Antennas Propagation, 59(7), 2457–2463.

    Article  Google Scholar 

  34. Computer simulation technology microwave studio (CST MWS). Retrieved from http://www.cst.co.

  35. Kumar, Y., & Singh, S. (2015). A compact multiband hybrid fractal antenna for multi standard mobile wireless application. Wireless Personal Communications, 84, 57–67.

    Article  Google Scholar 

  36. Sivia, J. S., Pharwaha, A. P. S., & Kamal, T. S. (2013). Analysis and design of circular fractal antenna using artificial neural networks. Progress In Electromagnetics Research B, 56, 251–267.

    Article  Google Scholar 

  37. Sivanandam, S. N., & Deepa, S. N. (2008). Principles of soft computing. Wiley-India (P) Ltd.

    Google Scholar 

  38. Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. International Journal of Electronics and Communications, 99, 14–24.

    Article  Google Scholar 

  39. Kaur, R., & Rattan, M. (2015). Optimization of the return loss of differentially fed microstrip patch antenna using ANN and firefly algorithm. Wireless Personal Communications, 80(4), 1547–1556.

    Article  Google Scholar 

  40. Bhushan, B. & Pillai, S. S. (2013). Particle swarm optimization and firefly algorithm: Performance analysis. In: IEEE International Advances Computing Conference (IACC), pp. 746–751.

  41. Mohammed, H. J., Abdullah, A. S., Ali, R. S., Abd-Alhameed, R. A., Abdulraheem, Y. I., & Noras, J. M. (2014). Design of a unipolar printed triple band-rejected ultra-wideband antenna using particle swarm optimization and the firefly algorithm. IET Microwaves, Antennas & Propagation, 10(1), 31–37.

    Article  Google Scholar 

  42. Chen, H., Zhang, J., Bai, Y., Luo, Y., Ran, L., Jiang, Q., & Kong, J. A. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14(26), 12944–12949.

    Article  Google Scholar 

  43. Saha, C., & Siddiqui, J. Y. (2011). Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators. International Journal of RF Microwave Computer Aided Engineering, 21, 432–438.

    Article  Google Scholar 

  44. Smith, D. R., Schultz, S., Markos, P., & Soukoulis, C. M. (2002). Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review B, 65, 195104–195109.

    Article  Google Scholar 

  45. Saraswat, R. K., & Kumar, M. (2020). A quad band metamaterial miniaturized antenna for wireless applications with gain enhancement. Wireless Personal Communications, 114, 3595–3612.

    Article  Google Scholar 

  46. Singh, P. P., Goswami, P. K., Sharma, S. K., & Goswami, G. (2020). Frequency reconfigurable multiband antenna for IoT applications in WLAN, Wi-Max, and C-band. Progress In Electromagnetics Research C, 102, 149–162.

    Article  Google Scholar 

  47. Bharti, G., & Sivia, J. S. (2021). A design of multiband nested square shaped ring fractal antenna with circular ring elements for wireless applications. Progress In Electromagnetics Research C, 108, 115–125.

    Article  Google Scholar 

  48. Kaur, A., & Malik, P. K. (2021). Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications. Progress In Electromagnetics Research B, 91, 157–173.

    Article  Google Scholar 

Download references

Acknowledgements

The author thank Prof. S. K. Koul, CARE, IIT Delhi, India, for providing measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Saraswat.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Data availability

The data generated during this study are included within this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, R.K. A Hybrid Fractal Metamaterial Inspired Multiband Antenna for Wireless Applications. Wireless Pers Commun 124, 2593–2612 (2022). https://doi.org/10.1007/s11277-022-09480-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09480-w

Keywords

Navigation