Skip to main content
Log in

Bio-Cyber Interface Parameter Estimation with Neural Network for the Internet of Bio-Nano Things

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recently, there is growing interest in the Internet of Bio-Nano Things (IoBNT) based on biological communication with the advent of communication engineering and nanotechnology. One of the IoBNT's significant challenges is modeling and simulating of bio-cyber interface for linking electromagnetic signal- based internet to the biochemical signal-based bio-nano-network. Gaining an understanding of the bio-cyber interface is vital for the design of the IoBNT framework. In this paper, an artificial neural network (ANN) approach is proposed for parameter estimation of the bio-cyber interface. This choice's motivation is the complexity of the mathematical model of the bio-cyber interface system and the possibility of using ANN methods in this perspective. The idea in this work is for ANN and mathematical modeling to complement each other. The proposed approach is based on two directions: using a non-linear least square for fitting electro-bio and bio-electro interface model parameters, then applying ANN to the output of the first direction to learn the design behind the model parameters(to acquire the parameter estimator). The research work proves that ANN can learn (train) from the model parameters. Furthermore, the training network can predict the model parameters for a given system. The results show that ANN achieves effective performance for parameter estimation of the bio-cyber interface. Finally,the performance analysis of the proposed bio-cyber interface device is evaluated by employing a pharmacokinetics compartmental model for molecule diffusion over the blood vessel system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akyildiz, I. F., Pierobon, M., Balasubramaniam, S., & Koucheryavy, Y. (2015). The internet of bio-nano things. IEEE Communications Magazine, 53(3), 32–40.

    Article  Google Scholar 

  2. Pramanik, P. K. D., Solanki, A., Debnath, A., Nayyar, A., El-Sappagh, S., & Kwak, K. S. (2020). Advancing modern healthcare with nanotechnology, nanobiosensors, and internet of nano things: Taxonomies, applications, architecture, and challenges. IEEE Access, 8, 65230–65266.

    Article  Google Scholar 

  3. Akyildiz, I. F., Ghovanloo, M., Guler, U., Ozkaya-Ahmadov, T., Sarioglu, A. F., & Unluturk, B. D. (2020). PANACEA: An internet of bio-nanothings application for early detection and mitigation of infectious diseases. IEEE Access, 8, 140512–140523.

    Article  Google Scholar 

  4. Kuscu, M., & Akan, O. B. (2018). Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of bio-nano things. PLoS ONE, 13(2), 0192202.

    Article  Google Scholar 

  5. Yang, K., Bi, D., Deng, Y., Zhang, R., Rahman, M. M. U., Ali, N. A., & Alomainy, A. (2020). A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 6(2), 107–133.

    Article  Google Scholar 

  6. Söldner, C. A., Socher, E., Jamali, V., Wicke, W., Ahmadzadeh, A., Breitinger, H. G., & Sticht, H. (2020). A survey of biological building blocks for synthetic molecular communication systems. IEEE Communications Surveys and Tutorials, 22(4), 2765–2800.

    Article  Google Scholar 

  7. Akan, O. B., Ramezani, H., Khan, T., Abbasi, N. A., & Kuscu, M. (2017). Fundamentals of molecular information and communication science. Proceedings of the IEEE, 105(2), 306–318.

    Article  Google Scholar 

  8. Jamali, V., Ahmadzadeh, A., Wicke, W., Noel, A., & Schober, R. (2019). Channel modeling for diffusive molecular communication—A tutorial review. Proceedings of the IEEE, 107(7), 1256–1301.

    Article  Google Scholar 

  9. Chude-Okonkwo, U. A., Malekian, R., Maharaj, B. T., & Vasilakos, A. V. (2017). Molecular communication and nanonetwork for targeted drug delivery: A survey. IEEE Communications Surveys and Tutorials, 19(4), 3046–3096.

    Article  Google Scholar 

  10. Atakan, B., Akan, O. B., & Balasubramaniam, S. (2012). Body area nanonetworks with molecular communications in nanomedicine. IEEE Communications Magazine, 50(1), 28–34.

    Article  Google Scholar 

  11. Chahibi, Y., Pierobon, M., & Akyildiz, I. F. (2015). Pharmacokinetic modeling and biodistribution estimation through the molecular communication paradigm. IEEE Transactions on Biomedical Engineering, 62(10), 2410–2420.

    Article  Google Scholar 

  12. Chude-Okonkwo, U. A. (2014). Diffusion-controlled enzyme-catalyzed molecular communication system for targeted drug delivery. In 2014 IEEE global communications conference (pp. 2826–2831). IEEE.

  13. Chahibi, Y., Pierobon, M., Song, S. O., & Akyildiz, I. F. (2013). A molecular communication system model for particulate drug delivery systems. IEEE Transactions on Biomedical Engineering, 60(12), 3468–3483.

    Article  Google Scholar 

  14. Kuscu, M., & Akan, O. B. (2015). Modeling and analysis of SiNW bioFET as molecular antenna for bio-cyber interfaces towards the Internet of bio-nanothings. In 2015 IEEE 2nd world forum on internet of things (WF-IoT) (pp. 669–674). IEEE.

  15. Liu, Y., Tsao, C. Y., Kim, E., Tschirhart, T., Terrell, J. L., Bentley, W. E., & Payne, G. F. (2017). Using a redox modality to connect synthetic biology to electronics: Hydrogel-based chemo-electro signal transduction for molecular communication. Advanced healthcare materials, 6(1), 1600908.

    Article  Google Scholar 

  16. Chude-Okonkwo, U. A., Malekian, R., & Maharaj, B. T. (2016). Biologically inspired bio-cyber interface architecture and model for the Internet of bio-nano things applications. IEEE Transactions on Communications, 64(8), 3444–3455.

    Article  Google Scholar 

  17. Wang, W., Tang, Q., & Livescu, K. (2020). Unsupervised pre-training of bidirectional speech encoders via masked reconstruction. In ICASSP 2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 6889–6893). IEEE.

  18. Mohamed, S., Dong, J., & Junejo, A. R. (2019). Model-based: End-to-end molecular communication system through deep reinforcement learning auto encoder. IEEE Access, 7, 70279–70286.

    Article  Google Scholar 

  19. Mohamed, S., Jian, D., Hongwei, L., & Decheng, Z. (2020). Molecular communication via diffusion with spherical receiver and transmitter and trapezoidal container. Microprocessors and Microsystems, 74, 103017.

    Article  Google Scholar 

  20. Gligorijevic, J., Gligorijevic, D., Stojkovic, I., Bai, X., Goyal, A., & Obradovic, Z. (2019). Deeply supervised model for click-through rate prediction in sponsored search. Data Mining and Knowledge Discovery, 33(5), 1446–1467.

    Article  Google Scholar 

  21. Birkan Yilmaz, H., Lee, C., Cho, Y. J., & Chae, C. B. (2016). A machine learning approach to model the received signal in molecular communications. arXiv, arXiv-1611.

  22. Lee, C., Yilmaz, H. B., Chae, C. B., Farsad, N., & Goldsmith, A. (2017). Machine learning based channel modeling for molecular MIMO communications. In 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1–5). IEEE.

  23. Gulec, F., & Atakan, B. (2020). Distance estimation methods for a practical macroscale molecular communication system. Nano Communication Networks, 24, 100300.

    Article  Google Scholar 

  24. Qian, X., & Di Renzo, M. (2018). Receiver design in molecular communications: An approach based on artificial neural networks. In 2018 15th international symposium on wireless communication systems (ISWCS) (pp. 1–5). IEEE.

  25. Kwon, K., Kim, D., & Park, H. (2017). A parallel MR imaging method using multilayer perceptron. Medical physics, 44(12), 6209–6224.

    Article  Google Scholar 

  26. Jeyanathan, J. S., Jeyashree, P., & Shenbagavalli, A. (2018). Transform based classification of breast thermograms using multilayer perceptron back propagation neural network. International Journal of Pure and Applied Mathematics, 118(20), 1955–1961.

    Google Scholar 

  27. Hu, Q., Katti, P. S., & Gu, Z. (2014). Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 6(21), 12273–12286.

    Article  Google Scholar 

  28. Afadzi, M., Davies, C. D. L., Hansen, Y. H., Johansen, T. F., Standal, Ø. K. V., Måsøy, S. E., & Angelsen, B. (2010). Ultrasound stimulated release of liposomal calcein. In 2010 IEEE International Ultrasonics Symposium (pp. 2107–2110). IEEE.

  29. Vanpaemel, S., Naets, F., Vermaut, M., & Desmet, W. (2020). Parameter identification on flexible multibody models using the adjoint variable method and flexible natural coordinate formulation. Journal of Computational and Nonlinear Dynamics, 15(7).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soha Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research work was supported by National Natural Science Foundation of China under (No. 61100029).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, S., Dong, J., El-Atty, S.M.A. et al. Bio-Cyber Interface Parameter Estimation with Neural Network for the Internet of Bio-Nano Things. Wireless Pers Commun 123, 1245–1263 (2022). https://doi.org/10.1007/s11277-021-09177-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09177-6

Keywords

Navigation