Skip to main content
Log in

A Novel Mapping Technique for an Adaptive Length of Codes in SAC-OCDMA Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper an adaptive mapping technique (AMT) is proposed for spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The main purpose of the proposed technique is to construct codes whose length varies adaptively with the number of users. This task can be easily accomplished by successive offsets of the basic code matrix. The important benefit is that all the codes resulting from this technique have a zero cross-correlation property even if the basic code matrix doesn’t check it. Therefore, the AMT technique effectively reduces both MAI and PIIN. SAC-OCDMA system employing AMT is mathematically analyzed and then numerically simulated using Matlab. The results show the improvement given by this mapping technique to the SAC-OCDMA system. It illustrate that the proposed mapping technique can supports more users with a higher bit rate compared to the existing mapping techniques in the literature. The advantages of this technique have made it a compelling candidate for future OCDMA applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kadikar, R. U., & Prince, S. (2016). Software defined architecture on demand: A resilient node approach. In International conference on communication and signal processing (ICCSP). https://doi.org/10.1109/ICCSP.2016.7754084

  2. Beson, M. R. C., Aljunid, A. S., Ghani, F., Anuar, M. S., & Fadhil, H. A. (2013). Alleviation noise effect using flexible cross correlation code in spectral amplitude coding optical code division multiple access systems. Journal of Communications, 8(2), 101–109.

    Article  Google Scholar 

  3. Swadesh, M., & Islam, M. S. (2014). A new modified prime codes for higher user capacity in smart synchronous OCDMA network. In International conference on electrical engineering and information and communication technology (ICEEICT). https://doi.org/10.1109/ICEEICT.2014.6919134

  4. Salehi, J. A. (1989). Code division multiple access technique in optical fiber networks, Part II: System performance analysis. IEEE Transactions on Communications, 37(8), 834–842.

    Article  Google Scholar 

  5. Wei, Z. H., Shalaby, M., & Shiraz, H. G. (2001). New code families for fiber-Bragg-grating-based spectral amplitude-coding optical CDMA systems. IEEE Photonics Technology Letters, 13(8), 890–892.

    Article  Google Scholar 

  6. Wei, Z. H., Shalaby, M. H., & Ghafouri-Shiraz, H. (2001). Modified quadratic congruence codes for fiber bragg-grating-based spectral amplitude-coding optical CDMA systems. Journal of Lightwave Technology, 19(9), 1274–1281.

    Article  Google Scholar 

  7. Kakaee, M. H., Seyedzadeh, S., Fadhil, H. A., Ahmad, A. S. B., & Makhfudzah, M. (2014). Development of multi-service (MS) for SAC-OCDMA systems. Optics and Laser Technology. https://doi.org/10.1016/j.optlastec.2014.01.002.

    Article  Google Scholar 

  8. Abd, T. H., Aljunid, S. A., & Fadhil, H. A. (2013). A new code design for spectral amplitude coding optical CDMA systems using fiber bragg-grating. Journal of Optics, 42(2), 110–115.

    Article  Google Scholar 

  9. Ahmed, H. Y., & Nisar, K. (2013). Diagonal eigenvalue unity (DEU) code for spectral amplitude coding-optical code division multiple access. Optical Fiber Technology, 19(4), 335–347.

    Article  Google Scholar 

  10. Hasoon, F., Aljunid, S., Abdullah, M., & Shaari, S. (2006). Spectral amplitude coding OCDMA systems using enhanced double weight code. Journal of Engineering Science and Technology, 1(2), 192–202.

    Google Scholar 

  11. Imtiyaz, W. A., Ilyas, M., & Yousaf, K. (2016). Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code. Journal of Infrared Physics and Technology. https://doi.org/10.1016/j.infrared.2016.09.006.

    Article  Google Scholar 

  12. Pengfei, T., Ye, L., Huili, Z., Yao, P., Fan, G., & Chuanqi, L. (2018). Modified synchronous square prime code for SAC-OCDMA system using new partial balanced detection technique. Sidney, Australia. https://doi.org/10.1109/ICSENG.2018.8638172

  13. Anuar, M. S., Alijunid, S. A., Saad, N. M., & Hamzah, S. M. (2009). New design of spectral amplitude coding in OCDMA with zero cross-correlation. Optics Communications, 282(14), 2659–2664.

    Article  Google Scholar 

  14. Rashidi, C. B. M., Aljunid, S. A., Ghani, F., & Anuar, M. S. (2010). Development of modified zero cross correlation code for OCDMA network. In International conference on photonics. https://doi.org/10.1109/ICP.2010.5604406

  15. Bhanja, U., & Panda, S. (2017). Comparison of novel coding techniques for a fixed wavelength hopping SAC-OCDMA. Photonic Network Communications. https://doi.org/10.1007/s11107-016-0632-5.

    Article  Google Scholar 

  16. Mostafa, S., Mohamed, A. A., AbdEl-Samie, F. E., & Zaki, R. A. N. (2015). Eradication of multiple access interference using a modified multi-service code for SAC-OCDMA. Wireless Personal Communications. https://doi.org/10.1007/s11277-015-2430-2.

    Article  Google Scholar 

  17. Abd, T. H., Aljunid, S. A., Fadhil, H. A., Ahmad, R. A., & Saad, N. M. (2011). Development of a new code family based on SAC-OCDMA system with large cardinality for OCDMA networks. Journal of Optical Fiber Technology, 17(4), 273–280.

    Article  Google Scholar 

  18. Aljunid, S. A., Zan, Z., Ahmad, A. S. B., & Khazani, M. A. (2004). A new code for optical code division multiple access systems. Malaysian Journal of Computer, 17(2), 30–39.

    Google Scholar 

  19. Garadi, A., Djebbari, A., & Abdelmalik, T. A. (2017). Exact analysis of signal-to-noise ratio for SAC-OCDMA system with direct detection. Optik. https://doi.org/10.1016/j.ijleo.2017.07.038.

    Article  Google Scholar 

  20. Waqas, A., Imtiaz, A., Ahmed, H. Y., Medien, Z. B., & Yahia, S. (2019). Analysis of noise suppression for OCDMA systems with fixed in-phase cross-correlation codes and single O/E converter. Optik - International Journal for Light and Electron Optics. https://doi.org/10.1016/j.ijleo.2019.02.052.

    Article  Google Scholar 

  21. Ahmed, H. Y., Zeghid, M., Nisar, K. S., & Aljunid, S. A. (2017). Numerical method for constructing fixed right shift (FRS) code for SAC-OCDMA systems. International Journal of Advanced Computer Science and Applications (IJACSA), 8(1), 1546–1550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Hacini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacini, L., Aissaoui, A. A Novel Mapping Technique for an Adaptive Length of Codes in SAC-OCDMA Systems. Wireless Pers Commun 123, 1103–1119 (2022). https://doi.org/10.1007/s11277-021-09172-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09172-x

Keywords

Navigation