Skip to main content
Log in

A Frequency-Reconfigurable Microstrip Antenna with Constant Dipole-Like Radiation Patterns Using Single Bias, Triple Varactor Tuning with Reduced Complexity

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work proposes a novel frequency-reconfigurable circular patch antenna incorporated with a rectangular slot and a narrow slot capable of producing constant dipole-like radiation patterns. The antenna compactness is achieved with the integration of the rectangular slot defected ground structure (DGS) on the ground. The proposed antenna is able to perform continuous frequency tuning between 1.91 and 2.77 GHz with a frequency ratio of 1.5:1, in addition to stable dipole-like radiation patterns. The resonant frequency of the antenna is controlled by tuning a simple DC biasing network that consists of three RF varactor diodes located on the narrow slot DGS. Implementing the DC biasing network at the narrow slot DGS while maintaining the large slot DGS helps the antenna miniaturization and maintains the constant dipole-like radiation pattern over all frequency tuning range. The results are validated via simulations and experimental validations in terms of reflection coefficients and the radiation patterns. Measurements indicated that an impedance bandwidth of 85 MHz is featured for each tuned frequency band, with dipole-like patterns and an average gain of 1.57 dBi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability Of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Christodoulou, C. G., Tawk, Y., Lane, S. A., & Erwin, S. R. (2012). Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 100(7), 2250–2261. https://doi.org/10.1109/JPROC.2012.2188249

    Article  Google Scholar 

  2. Majid, H. A., Rahim, M. K. A., Hamid, M. R., & Ismail, M. F. (2012). A compact frequency-Reconfigurable narrowband microstrip slot antenna. IEEE Antennas and Wireless Propagation Letters, 11, 616–619. https://doi.org/10.1109/LAWP.2012.2202869

    Article  Google Scholar 

  3. Majid, H. A., Abdul Rahim, M. K., Hamid, M. R., Murad, N. A., & Ismail, M. F. (2013). Frequency-reconfigurable microstrip patch-slot antenna. IEEE Antennas and Wireless Propagation Letters, 12, 218–220. https://doi.org/10.1109/LAWP.2013.2245293

    Article  Google Scholar 

  4. Costantine, J., Tawk, Y., Barbin, S. E., & Christodoulou, C. G. (2015). Reconfigurable antennas: Design and applications. Proceedings of the IEEE, 103(3), 424–437. https://doi.org/10.1109/JPROC.2015.2396000

    Article  Google Scholar 

  5. Rajo-Iglesias, E., Tawk, Y., Costantine, J., & Christodoulou, C. G. (2014). Wireless corner: Cognitive-radio and antenna functionalities: A tutorial. IEEE Antennas and Propagation Magazine, 56(1), 231–243. https://doi.org/10.1109/MAP.2014.6821791

    Article  Google Scholar 

  6. Manjunatha, K. H., & Mehta, S. (2016). Reconfigurable communicating patch antenna for cognitive radio applications. In 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) (pp. 461–465). IEEE. https://doi.org/10.1109/ICCICCT.2016.7987994

  7. Salleh, S. M., Jusoh, M., Ismail, A. H., Kamarudin, M. R., Nobles, P., Rahim, M. K. A., Sabapathy, T., Osman, M. N., Jais, M. I., & Soh, P. J. (2017). Textile antenna with simultaneous frequency and polarization reconfiguration for WBAN. IEEE Access. https://doi.org/10.1109/ACCESS.2017.2787018

    Article  Google Scholar 

  8. Hossain, K., Sabapathy, T., Jusoh, M., Soh, P. J., Osman, M. N., Yasin, M. N. M., Rahim, H. A., Hodgkinson, C. J. & Podilchak, S. K. (2020). Pattern-Reconfigurable PCB-based Phased Array for WLAN Applications. In 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP) (pp. 1–2). Xiamen, China: IEEE. https://doi.org/10.1109/APCAP50217.2020.9246130

  9. Boufrioua, A. (2020). Frequency reconfigurable antenna designs using PIN diode for wireless communication applications. Wireless Personal Communications, 110(4), 1879–1885. https://doi.org/10.1007/s11277-019-06816-x

    Article  Google Scholar 

  10. Behdad, N., & Sarabandi, K. (2006). A varactor-tuned dual-band slot antenna. IEEE Transactions on Antennas and Propagation, 54(2), 401–408. https://doi.org/10.1109/TAP.2005.863373

    Article  Google Scholar 

  11. Jeong, W.-S., Lee, S.-Y., Lim, W.-G., Lim, H., & Yu, J.-W. (2008). Tunable Band-notched Ultra Wideband (UWB) Planar Monopole Antennas Using Varactor. In 2008 38th European Microwave Conference (pp. 266–268). IEEE. https://doi.org/10.1109/EUMC.2008.4751439

  12. Oh, S.-S. S., Jung, Y.-B. B., Ju, Y.-R. R., & Park, H.-D. D. (2010). Frequency-tunable open-ring microstrip antenna using varactor. In 2010 International Conference on Electromagnetics in Advanced Applications (pp. 624–626). IEEE. https://doi.org/10.1109/ICEAA.2010.5652325

  13. White, C. R., & Rebeiz, G. M. (2009). Single- and dual-polarized tunable slot-ring antennas. IEEE Transactions on Antennas and Propagation, 57(1), 19–26. https://doi.org/10.1109/TAP.2008.2009664

    Article  Google Scholar 

  14. Nguyen-Trong, N., Piotrowski, A., & Fumeaux, C. (2017). A frequency-reconfigurable dual-band low-profile monopolar antenna. IEEE Transactions on Antennas and Propagation, 65(7), 3336–3343. https://doi.org/10.1109/TAP.2017.2702664

    Article  MathSciNet  MATH  Google Scholar 

  15. Punjala, S. S., Pissinou, N., & Makki, K. (2015). A multiple resonant frequencies circular reconfigurable antenna investigated with wireless powering in a concrete block. International Journal of Antennas and Propagation, 2015(2), 1–9. https://doi.org/10.1155/2015/413642

    Article  Google Scholar 

  16. Erdil, E., Topalli, K., Unlu, M., Civi, O. A., & Akin, T. (2007). Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Transactions on Antennas and Propagation, 55(4), 1193–1196. https://doi.org/10.1109/TAP.2007.893426

    Article  Google Scholar 

  17. Cetiner, B. A., Crusats, G. R., Jofre, L., & Biyikli, N. (2010). RF MEMS integrated frequency reconfigurable annular slot antenna. IEEE Transactions on Antennas and Propagation, 58(3), 626–632. https://doi.org/10.1109/TAP.2009.2039300

    Article  Google Scholar 

  18. Gautam, A. K., & Vishvakarma, B. R. (2007). Analysis of varactor loaded active microstrip antenna. Microwave and Optical Technology Letters, 49(2), 416–421. https://doi.org/10.1002/mop.22154

    Article  Google Scholar 

  19. Pandhare, R. A., & Abegaonkar, M. P. (2020). Inset-feed frequency reconfigurable compact e-shape patch with DGS. Progress in Electromagnetics Research C, 101(January), 119–132.

    Article  Google Scholar 

  20. Riaz, S., Zhao, X., & Geng, S. (2019). A compact frequency agile patch antenna with agile microstrip feedline. In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies, iCoMET2019,1–4. https://doi.org/10.1109/ICOMET.2019.8673512

  21. Elftouh, H., Touhami, N. A., Aghoutane, M., Amrani, S. El, Tazon, A., & Boussouis, M. (2014). Miniaturized microstrip patch antenna with defected ground structure. Progress in Electromagnetics Research C, 55, 25–33.

  22. Zhao, X., & Riaz, S. (2018). A dual-band frequency reconfigurable MIMO patch-slot antenna based on reconfigurable microstrip feedline. IEEE Access, 6, 41450–41457. https://doi.org/10.1109/ACCESS.2018.2858442

    Article  Google Scholar 

  23. Riaz, S., Zhao, X., & Geng, S. (2020). A frequency reconfigurable MIMO antenna with agile feedline for cognitive radio applications. International Journal of RF and Microwave Computer-Aided Engineering, 30(3), 1–9. https://doi.org/10.1002/mmce.22100

    Article  Google Scholar 

  24. Hussain, R., Raza, A., Khan, M. U., Shammim, A., & Sharawi, M. S. (2019). Miniaturized frequency reconfigurable pentagonal MIMO slot antenna for interweave CR applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(9), 1–12. https://doi.org/10.1002/mmce.21811

    Article  Google Scholar 

  25. Jenath Sathikbasha, M., & Nagarajan, V. (2020). Design of multiband frequency reconfigurable antenna with defected ground structure for wireless applications. Wireless Personal Communications, 113(2), 867–892. https://doi.org/10.1007/s11277-020-07256-8

    Article  Google Scholar 

  26. Mahlaoui, Z., Antonino-Daviu, E., Ferrando-Bataller, M., Benchakroun, H., & Latif, A. (2017). Frequency reconfigurable patch antenna with defected ground structure using varactor diodes. In 2017 11th European Conference on Antennas and Propagation, EUCAP 2017, 2217–2220. https://doi.org/10.23919/EuCAP.2017.7928358

  27. Atallah, H. A., Abdel-Rahman, A. B., Yoshitomi, K., & Pokharel, R. K. (2016). Design of miniaturized reconfigurable slot antenna using varactor diodes for cognitive radio systems. In Proceedings of the 2016 4th International Japan-Egypt Conference on Electronic, Communication and Computers, JEC-ECC 2016 (pp. 63–66). IEEE. https://doi.org/10.1109/JEC-ECC.2016.7518968

  28. Cai, Y. M., Li, K., Yin, Y., Gao, S., Hu, W., & Zhao, L. (2018). A low-profile frequency reconfigurable grid-slotted patch antenna. IEEE Access, 6, 36305–36312. https://doi.org/10.1109/ACCESS.2018.2850926

    Article  Google Scholar 

  29. Hu, J., & Hao, Z. C. (2018). Design of a frequency and polarization reconfigurable patch antenna with a stable gain. IEEE Access, 6, 68169–68175. https://doi.org/10.1109/ACCESS.2018.2879498

    Article  Google Scholar 

  30. Ibrahim, A. A., & Shubair, R. M. (2016). Reconfigurable band-notched UWB antenna for cognitive radio applications. Mediterranean Microwave Symposium. https://doi.org/10.1109/MMS.2016.7803783

    Article  Google Scholar 

  31. Jaglan, N., Gupta, S. D., & Srivastava, S. (2016). Notched UWB circular monopole antenna design using uni-planar EBG structures. International Journal on Communications Antenna and Propagation, 6(5), 266–273. https://doi.org/10.15866/irecap.v6i5.9456

    Article  Google Scholar 

  32. Jaglan, N., Gupta, S. D., Kanaujia, B. K., & Srivastava, S. (2018). Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures. Wireless Networks, 24(2), 383–393. https://doi.org/10.1007/s11276-016-1343-7

    Article  Google Scholar 

  33. Yeo, J., & Lee, J. I. (2019). Slot-loaded microstrip patch sensor antenna for high-sensitivity permittivity characterization. Electronics (Switzerland). https://doi.org/10.3390/electronics8050502

    Article  Google Scholar 

  34. Skyworks. (n.d.). SMV1232 SERIES Hyperabrupt Junction Tuning Varactors. Retrieved September 15, 2020, from https://www.skyworksinc.com/products/diodes/smv1232-series

  35. Keysight Technoloiges. (2013). Keysight E3631A Triple Output DC Power Supply User’s Guide.

  36. Avşar Aydin, E., & Kaya Keleş, M. (2019). UWB rectangular microstrip patch antenna design in matching liquid and evaluating the classification accuracy in data mining using random forest algorithm for breast cancer detection with microwave. Journal of Electrical Engineering and Technology, 14(5), 2127–2136. https://doi.org/10.1007/s42835-019-00205-x

    Article  Google Scholar 

  37. Tateno, H., Saito, S., & Kimura, Y. (2016). A frequency-tunable varactor-loaded single-layer ring microstrip antenna with a bias circuit on the backside of the ground plane. In 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016 - Proceedings, (pp. 829–830). https://doi.org/10.1109/APS.2016.7696123

  38. Sam, W. Y., & Zakaria, Z. (2017). The investigation of the varactor diode as tuning element on reconfigurable antenna. In APCAP 2016 - 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation, Conference Proceedings, (pp. 13–14). https://doi.org/10.1109/APCAP.2016.7843076

  39. Cheung, S. W., Cao, Y. F., & Yuk, T. I. (2015). Compact frequency reconfigurable slot antenna with continuous tuning range for cognitive radios. In 2015 9th European Conference on Antennas and Propagation, EuCAP 2015, (pp. 1–4).

  40. Mahlaoui, Z., Antonino-Daviu, E., Latif, A., & Ferrando-Bataller, M. (2019). Design of a dual-band frequency reconfigurable patch antenna based on characteristic modes. International Journal of Antennas and Propagation. https://doi.org/10.1155/2019/4512532

    Article  Google Scholar 

Download references

Funding

The author would like to acknowledge the support from the Short-Term Research Grant (Mentorship) under a grant number of 9001–00600 from the Universiti Malaysia Perlis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptual design: KH, TS, MJ and PJS. Investigation and Methodology: RBA, MIJ and MNO. Supervision: TS, MJ and MNO. Concept visualization: MNMY, HAR. Writing and editing: KH, PJS, NS and QHA.

Corresponding author

Correspondence to Thennarasan Sabapathy.

Ethics declarations

Conflict of interest

No conflict of interest/Competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, K., Sabapathy, T., Jusoh, M. et al. A Frequency-Reconfigurable Microstrip Antenna with Constant Dipole-Like Radiation Patterns Using Single Bias, Triple Varactor Tuning with Reduced Complexity. Wireless Pers Commun 123, 1003–1024 (2022). https://doi.org/10.1007/s11277-021-09167-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09167-8

Keywords

Navigation