Skip to main content

Advertisement

Log in

Cost-Effective Modeling for Incorporating Flexibility by Securing Wireless Mobile Sensors Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Existing security approaches for safeguarding data exchange among the sensor nodes are investigated in presence of apriori information of an adversary in wire-less sensor network. The approaches that are implemented at present witnessed with various issues associated with security and still there is a higher scope. A unique modeling is presented in this manuscript that considers multiple static sink nodes spread over geographical area and mobile sensor nodes. A dynamic authentication policy is targeted to be achieved by implementing a lightweight encryption mechanism using analytical modeling approach. The presented logic is programmed using MATLAB and the obtained resultants of the model exhibits that it offers a significantly improved energy retention performance, lower memory dependency, and lower inclusion of cost in comparison to existing standard security approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Femmam, S. (2017). Building wireless sensor networks: Application to routing and data diffusion. Elsevier Technology & Engineering.

  2. Kantarci, B., Oktug, S. (2019). Wireless sensor and actuator networks for smart cities, MDPI. https://doi.org/10.3390/books978-3-03897-424-6, (p. 168).

  3. Singh, P. K., Bhargava, B. K., Paprzycki, M., Kaushal, N. C., & Hong, W. C. (2020). Handbook of wireless sensor networks: Issues and challenges in current scenario’s, (p. 716).

  4. Conti, M.(2015). Secure wireless sensor networks: Threats and solutions, Springer Computers, (p. 169).

  5. Patel, N. R., & Kumar, S. (2018). Wireless sensor networks’ challenges and future prospects. In: 2018 International Conference on System Modeling & Advancement in Research Trends (SMART). https://doi.org/10.1109/SYSMART.2018.8746937, (pp. 60-65).

  6. Li, S., Wang, W., Zhou, B., Wang, J., Cheng, Y., & Wu, J. (2017). A secure scheme for heterogeneous sensor networks. IEEE Wireless Communications Letters, 6(2), 182–185. https://doi.org/10.1109/LWC.2017.2650986

    Article  Google Scholar 

  7. Shim, K. (2016). A survey of public-key cryptographic primitives in wireless sensor networks. IEEE Communications Surveys & Tutorials, 18(1), 577–601. https://doi.org/10.1109/COMST.2015.2459691

    Article  Google Scholar 

  8. Al Shehri, W. (2017). A survey on security in wireless sensor networks. International Journal of Network Security & Its Applications, 9, 25–32. https://doi.org/10.5121/ijnsa.2017.9103

    Article  Google Scholar 

  9. Faris, F., Seyed, H., Ahmed, A., Almisreb, A., Norzeli, M., & Norashidah, D. (2019). A survey on security in wireless sensor network. Southeast Europe Journal of Soft Computing. https://doi.org/10.21533/scjournal.v8i1.174

    Article  Google Scholar 

  10. Miranda, C., Kaddoum, G., Bou-Harb, E., Garg, S., & Kaur, K. (2020). A collaborative security framework for software-defined wireless sensor networks. IEEE Transactions on Information Forensics and Security, 15, 2602–2615. https://doi.org/10.1109/TIFS.2020.2973875

    Article  Google Scholar 

  11. Aliady, W. A., & Al-Ahmadi, S. A. (2019). Energy preserving secure measure against wormhole attack in wireless sensor networks. IEEE Access, 7, 84132–84141. https://doi.org/10.1109/ACCESS.2019.2924283

    Article  Google Scholar 

  12. Albakri, A., & Harn, L. (2019). Non-interactive group key pre-distribution scheme (GKPS) for end-to-end routing in wireless sensor networks. IEEE Access, 7, 31615–31623. https://doi.org/10.1109/ACCESS.2019.2900390

    Article  Google Scholar 

  13. Gope, P., Das, A. K., Kumar, N., & Cheng, Y. (2019). Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 5(9), 4957–4968. https://doi.org/10.1109/TII.2019.2895030

    Article  Google Scholar 

  14. Li, X., Peng, J., Obaidat, M. S., Wu, F., Khan, M. K., & Chen, C. (2020). A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems. IEEE Systems Journal, 14(1), 39–50. https://doi.org/10.1109/JSYST.2019.2899580

    Article  Google Scholar 

  15. Liu, Z. (2019). Security cooperation model based on topology control and time synchronization for wireless sensor networks. Journal of Communications and Networks, 21(5), 469–480. https://doi.org/10.1109/JCN.2019.000041

    Article  Google Scholar 

  16. Wang, N., Fu, J., Li, J., & Bhargava, B. K. (2020). Source-location privacy protection based on anonymity cloud in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 15, 100–114. https://doi.org/10.1109/TIFS.2019.2919388

    Article  Google Scholar 

  17. Wang, H., Xu, L., Lin, W., Xiao, P., & Wen, R. (2019). Physical layer security performance of wireless mobile sensor networks in smart city. IEEE Access, 7, 15436–15443. https://doi.org/10.1109/ACCESS.2019.2895338

    Article  Google Scholar 

  18. Yang, Y., He, D., Kumar, N., & Zeadally, S. (2018). Compact hardware implementation of a SHA-3 core for wireless body sensor networks. IEEE Access, 6, 40128–40136. https://doi.org/10.1109/ACCESS.2018.2855408

    Article  Google Scholar 

  19. Yang, Y., Lu, S., Liu, T., & Liang, Z. (2018). A dynamic behavior monitoring game-based trust evaluation scheme for clustering in wireless sensor networks. IEEE Access, 6, 71404–71412. https://doi.org/10.1109/ACCESS.2018.2879360

    Article  Google Scholar 

  20. Chen, L., Chen, Z., Choo, K. R., Chang, C., & Sun, H. (2019). Memory leakage-resilient dynamic and verifiable multi-keyword ranked search on encrypted smart body sensor network data. IEEE Sensors Journal, 19(19), 8468–8478. https://doi.org/10.1109/JSEN.2018.2865550

    Article  Google Scholar 

  21. Hamici, Z. (2018). Towards genetic cryptography for biomedical wireless sensor networks gateways. IEEE Journal of Biomedical and Health Informatics, 22(6), 1814–1823. https://doi.org/10.1109/JBHI.2018.2860980

    Article  Google Scholar 

  22. Huang, H., Gong, T., Zhang, R., Yang, L., Zhang, J., & Xiao, F. (2018). Intrusion detection based on $k$-coverage in mobile sensor networks with empowered intruders. IEEE Transactions on Vehicular Technology, 67(12), 12109–12123. https://doi.org/10.1109/TVT.2018.2872848

    Article  Google Scholar 

  23. Kirsal, Y. (2019). Secure-anonymous user authentication scheme for e-healthcare application using wireless medical sensor networks. IEEE Systems Journal, 13(1), 456–467. https://doi.org/10.1109/JSYST.2018.2866067

    Article  Google Scholar 

  24. Padmanabhan, J., & Manickavasagam, V. (2018). Scalable and distributed detection analysis on wormhole links in wireless sensor networks for networked systems. IEEE Access, 6, 1753–1763. https://doi.org/10.1109/ACCESS.2017.2780188

    Article  Google Scholar 

  25. Cao, B., Zhao, J., Lv, Z., & Liu, X. (2019). 3D terrain multiobjective deployment optimization of heterogeneous directional sensor networks in security monitoring. IEEE Transactions on Big Data, 5(4), 495–505. https://doi.org/10.1109/TBDATA.2017.2685581

    Article  Google Scholar 

  26. Moara-N, K., Shi, Q., Lee, G. M., & Eiza, M. H. (2018). A Novel physical layer secure key generation and refreshment scheme for wireless sensor networks. IEEE Access, 6, 11374–11387. https://doi.org/10.1109/ACCESS.2018.2806423

    Article  Google Scholar 

  27. Nurellari, E., McLernon, D., & Ghogho, M. (2018). A secure optimum distributed detection scheme in under-attack wireless sensor networks. IEEE Transactions on Signal and Information Processing over Networks, 4(2), 325–337. https://doi.org/10.1109/TSIPN.2017.2697724

    Article  MathSciNet  Google Scholar 

  28. Shin, S., & Kwon, T. (2018). Two-factor authenticated key agreement supporting unlinkability in 5G-integrated wireless sensor networks. IEEE Access, 6, 11229–11241. https://doi.org/10.1109/ACCESS.2018.2796539

    Article  Google Scholar 

  29. Shin, S., & Kwon, T. (2020). A privacy-preserving authentication, authorization, and key agreement scheme for wireless sensor networks in 5G-integrated internet of things. IEEE Access, 8, 67555–67571. https://doi.org/10.1109/ACCESS.2020.2985719

    Article  Google Scholar 

  30. Lin, H., Chen, P., Han, Y. S., & Varshney, P. K. (2020). Minimum Byzantine effort for blinding distributed detection in wireless sensor networks. IEEE Transactions on Signal Processing, 68, 647–661. https://doi.org/10.1109/TSP.2020.2964241

    Article  MathSciNet  Google Scholar 

  31. Parande, S., & Mallapur, D. (2019). Research trends in secure routing protocols and communication system in WSNs. International Journal of Innovative Technology and Exploring Engineering, 9(1), 3413–3421.

    Article  Google Scholar 

  32. Parande, S., & Mallapur, J. D. (2019). Simplified framework for resisting lethal incoming threats from polluting in wireless sensor network. In: Computer Science On-line Conference.

  33. Parande, S., & Mallapur, J. D. (2020). Tactical approach to identify and quarantine spurious node participation request in sensory application. International Journal of Electrical & Computer Engineering, 10, 2088–8708.

    Google Scholar 

  34. El_Saadawy, M., & Shaaban, E. (2012). Enhancing S-LEACH security for wireless sensor networks. In: 2012 IEEE International Conference on Electro/Information Technology, Indianapolis, IN, (pp. 1–6).

  35. Oliveira, L. B., Wong, H. C., Bern, M., Dahab, R., & Loureiro, A. A. F. (2006). SecLEACH—A random key distribution solution for securing clustered sensor networks. In: Fifth IEEE International Symposium on Network Computing and Applications (NCA’06), Cambridge, MA, (pp. 145–154).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somu Parande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parande, S., Mallapur, J.D. Cost-Effective Modeling for Incorporating Flexibility by Securing Wireless Mobile Sensors Network. Wireless Pers Commun 123, 727–744 (2022). https://doi.org/10.1007/s11277-021-09155-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09155-y

Keywords

Navigation