Skip to main content

Advertisement

Log in

Design, Simulation and Fabrication of an Implanted Antenna at ISM Band in Body Tissue

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A rectangular meandering-microstrip patch antenna (RM-MPA) with short pin for implant antenna and biomedical applications at industrial, scientific, and medical (ISM) band is proposed. The rectangular patch has a length of l = 14 mm and a width of w = 9.4 mm. The substrate and superstrate are made of Rogers 3210 with dielectric constant equals to 10.2. The RM-MPA is placed between the substrate and superstrate dielectric layers whose same thickness equals 0.635 mm. The proposed antenna is fed by a 50-Ω coaxial probe, at the centre of the length and edge of the width of the patch. The input impedance of the patch antenna varies with the patch geometry. Thus, the geometry of the patch changed to achieve impedance matching at the ISM band. The rectangular patch divided into three sections along width for meandering. The resonance frequency is tuned by meandering each section. The proposed antenna is simulated in free space and skin phantom. The proposed antenna has an efficiency of 90%, bandwidth of 1.02%. Both radiation pattern and SAR have evaluated which SAR level is below the safety and satisfies SAR standards. Finally, the antenna is tested in minced meat and tissue liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Material

All data such as simulations and measurement are given in the text.

Code Availability

Simulation using HFSS.

References

  1. Lalbakhsh, A., Afzal, M. U., & Esselle, K. P. (2017). Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna. IEEE Antennas and Wireless Propagation Letters, 16, 912–915.

    Article  Google Scholar 

  2. Magill, M. K., Conway, G. A., & Scanlon, W. G. (2020). Circularly polarized dual-mode wearable implant repeater antenna with enhanced into-body gain. IEEE Transactions on Antennas and Propagation, 68(5), 3515–3524.

    Article  Google Scholar 

  3. Elyassi, R., & Moradi, G. (2017). Flexible and moon-shaped slot UWB implantable antenna design for head implants. International Journal of Microwave and Wireless Technologies, 9(8), 1559–1567.

    Article  Google Scholar 

  4. Wong, T. Z., Strohbehn, J. W., Jones, K. M., Mechling, J. A., & Trembly, B. S. (1986). SAR patterns from an interstitial microwave antenna-array hyperthermia system. IEEE Transactions on Microwave Theory and Techniques, 34(5), 560–567.

    Article  Google Scholar 

  5. El-Saboni, Y., Zelenchuk, D. E., Conway, G. A., & Scanlon, W. G. (2019). Assessing the intrinsic radiation efficiency of tissue-implanted UHF antennas. IEEE Transactions on Antennas and Propagation, 68(1), 491–499.

    Article  Google Scholar 

  6. Ding, S., Koulouridis, S., & Pichon, L. (2020). Design and characterization of a dual-band miniaturized circular antenna for deep in body biomedical wireless applications. International Journal of Microwave and Wireless Technologies, 12(6), 461–468.

    Article  Google Scholar 

  7. Ganeshwaran, N., Jeyaprakash, J. K., Alsath, M. G. N., & Sathyanarayanan, V. (2020). Design of a dual-band circular implantable antenna for biomedical applications. IEEE Antennas and Wireless Propagation Letters, 19(1), 119–123.

    Article  Google Scholar 

  8. Faisal, F., & Yoo, H. (2019). A miniaturized novel-shape dual-band antenna for implantable applications. IEEE Transactions on Antennas and Propagation, 67(2), 774–783.

    Article  Google Scholar 

  9. Chen, Z. N., Liu, G. C., & See, T. S. (2009). Transmission of RF signals between mics loop antennas in free space and implanted in the human head. IEEE Transactions on Antennas and Propagation, 57(6), 1850–1854.

    Article  Google Scholar 

  10. Shah, I. A., Zada, M., & Yoo, H. (2019). Design and analysis of a compact-sized multiband spiral-shaped implantable antenna for scalp implantable and leadless pacemaker systems. IEEE Transactions on Antennas and Propagation, 67(6), 4230–4234.

    Article  Google Scholar 

  11. Duan, Z., Guo, Y., Je, M., & Kwong, D. (2014). Design and in vitro test of a differentially fed dual-band implantable antenna operating at MICS and ISM bands. IEEE Transactions on Antennas and Propagation, 62(5), 2430–2439.

    Article  Google Scholar 

  12. Huang, F. J., Lee, C. M., Chang, C. L., Chen, L. K., Yo, T. C., & Luo, C. H. (2011). Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Transactions on Antennas and Propagation, 59(7), 2646–2653.

    Article  Google Scholar 

  13. Merli, F., Bolomey, L., Zurcher, J. F., Corradini, G., Meurville, E., & Skrivervik, A. K. (2011). Design, realization and measurements of a miniature antenna for implantable wireless communication systems. IEEE Transactions on Antennas and propagation, 59(10), 3544–3555.

    Article  Google Scholar 

  14. Liu, C., Guo, Y. X., & Xiao, S. (2014). Capacitively loaded circularly polarized implantable patch antenna for ISM band biomedical applications. IEEE Transactions on Antennas and Propagation, 62(5), 2407–2417.

    Article  Google Scholar 

  15. Lin, H. Y., Takahashi, M., Saito, K., & Ito, K. (2012). Performance of implantable folded dipole antenna for in-body wireless communication. IEEE Transactions on Antennas and Propagation, 61(3), 1363–1370.

    Article  Google Scholar 

  16. Ketavath, K. N., Gopi, D., & Sandhya Rani, S. (2019). In-vitro test of miniaturized CPW-fed implantable conformal patch antenna at ISM Band for biomedical applications. IEEE Access, 7, 43547–43554.

    Article  Google Scholar 

  17. Ashok Kumar, S., & Shanmuganantham, T. (2015). Implantable CPW-fed Z-monopole antennas at 2.45 GHz ISM band for biomedical applications. International Journal of Microwave and Wireless Technologies, 7(5), 529–533.

    Article  Google Scholar 

  18. Ashok Kumar, S., & Shanmuganantham, T. (2014). Coplanar waveguide-fed ISM band implantable crossed-type triangular slot antenna for biomedical applications. International Journal of Microwave and Wireless Technologies, 6(2), 167–172.

    Article  Google Scholar 

  19. Mathialagan, S. (2017). Design of CPW-fed tapered MIMO antenna for ISM band applications. International Journal of Microwave and Wireless Technologies, 9(1), 227–230.

    Article  Google Scholar 

  20. Murphy, O. H., McLeod, C. N., Navaratnarajah, M., Yacoub, M., & Toumazou, C. (2011). A pseudo-normal-mode helical antenna for use with deeply implanted wireless sensors. IEEE Transactions on Antennas and Propagation, 60(2), 1135–1139.

    Article  Google Scholar 

  21. J. Xu, H. Sato, M. Motoyoshi, N. Suematu, K. Yasui and Q. Chen (2021) A Low-loss and Compact UHF RFID Tag Antenna for Implanted Denture. IEEE Journal of Radio Frequency Identification, (Early Access).

  22. https://niremf.ifac.cnr.it/tissprop/

  23. Kiourti, A., & Nikita, K. S. (2012). A review of implantable patch antennas for biomedical telemetry: Challenges and solutions. IEEE Antennas and Propagation Magazine, 54(3), 210–228.

    Article  Google Scholar 

  24. Lalbakhsh, A., Alizadeh, S. M., Ghaderi, A., Golestanifar, A., Mohamadzade, B., Jamshidi, M. B., Mandal, K., & Mohyuddin, W. (2020). A design of a dual-band bandpass filter based on modal analysis for modern communication systems. Electronics, 9(11), 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS did the design and simulation and MSB did the fabricated, measured and wrote the article.

Corresponding author

Correspondence to Mohammad Sajjad Bayati.

Ethics declarations

Conflicts of interest

There is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seydi, M., Bayati, M.S. Design, Simulation and Fabrication of an Implanted Antenna at ISM Band in Body Tissue. Wireless Pers Commun 122, 2023–2033 (2022). https://doi.org/10.1007/s11277-021-08978-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08978-z

Keywords

Navigation