Skip to main content
Log in

Performance Analysis of Turbo Product Codes in Multipath Visible Light Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Performance of visible light communication systems which is encoded using turbo product codes is studied in this article. It is the first time to show the effect of turbo product codes in these systems. We chose ceiling bounce model since its accuracy with the practical measurements is proved. Our simulations are carried out in two different link distance and two different data rates. Encoder parameters are selected according to the code rate. This way, meaningful comparison can be made among the results considering distance, data rate, and code rate. Our investigations infer that using turbo product codes, higher data rate is achieved where link distance is the same. Similarly, it can be reached higher link distance when data rate is set to a constant value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gazi, O. (2020). Forward error correction via channel coding (1st ed.). International Publishing.

    Book  Google Scholar 

  2. Pyndiah, R. M. (1998). Near-optimum decoding of product codes: Block turbo codes. IEEE Transactions on Communications, 46(8), 1003–1010. https://doi.org/10.1109/26.705396

    Article  MATH  Google Scholar 

  3. Li, J., Kurtas, E., Narayanan, K. R., & Georghiades, C. N. (2001). On the performance of turbo product codes over partial response channels. IEEE Transactions on Magnetics, 37(4), 1932–1934. https://doi.org/10.1109/20.951012

    Article  Google Scholar 

  4. Sun, L. Y., Song, H. W., Keirn, Z., & Kumar, B. V. K. V. (2006). Field programmable gate array (FPGA) for iterative code evaluation. IEEE Transactions on Magnetics, 42(2), 226–231. https://doi.org/10.1109/Tmag.2005.861744

    Article  Google Scholar 

  5. Argon, C., & McLaughlin, S. W. (2002). Optical OOK-CDMA and PPM-CDMA systems with turbo product codes. Journal of Lightwave Technology, 20(9), 1653–1663. https://doi.org/10.1109/Jlt.2002.802224

    Article  Google Scholar 

  6. Mizuochi, T., Miyata, Y., Kobayashi, T., Ouchi, K., Kuno, K., Kubo, K., et al. (2004). Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems. IEEE Journal of Selected Topics in Quantum Electronics, 10(2), 376–386. https://doi.org/10.1109/Jstqe.2004.827846

    Article  Google Scholar 

  7. Mukhtar, H., Al-Dweik, A., Al-Mualla, M., & Shami, A. (2013). Adaptive hybrid ARQ system using turbo product codes with hard/soft decoding. IEEE Communications Letters, 17(11), 2132–2135. https://doi.org/10.1109/Lcomm.2013.092813.131480

    Article  Google Scholar 

  8. Yang, S. H., Han, Y., Wu, X. B., Wood, R., & Galbraith, R. (2015). A soft decodable concatenated LDPC code. IEEE Transactions on Magnetics. https://doi.org/10.1109/Tmag.2015.2441055

    Article  Google Scholar 

  9. Xu, C. L., Liang, Y. C., & Leon, W. S. (2007). Shortened turbo product codes: Encoding design and decoding algorithm. IEEE Transactions on Vehicular Technology, 56(6), 3495–3501. https://doi.org/10.1109/Tvt.2007.901931

    Article  Google Scholar 

  10. Mukhtar, H., Al-Dweik, A., & Shami, A. (2016). Turbo product codes: Applications, challenges, and future directions. IEEE Communications Surveys & Tutorials, 18(4), 3052–3069. https://doi.org/10.1109/Comst.2016.2587863

    Article  Google Scholar 

  11. IEEE. IEEE Standard for Local and metropolitan area networks--Part 15.7: Short-Range Optical Wireless Communications. 2019. p. 1–407.

  12. Carruthers, J. B., & Kahn, J. M. (1997). Modeling of nondirected wireless infrared channels. IEEE Transactions on Communications, 45(10), 1260–1268. https://doi.org/10.1109/26.634690

    Article  Google Scholar 

  13. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2017). Optical wireless communications: System and channel modelling with MATLAB®. CRC Press.

    Google Scholar 

  14. Huang, X., Chen, L., Chen, W. J., & Jiang, M. (2019). Design of multilevel reed-solomon codes and iterative decoding for visible light communication. IEEE Transactions on Communications, 67(7), 4550–4561. https://doi.org/10.1109/Tcomm.2019.2904563

    Article  Google Scholar 

  15. Tang, C. J., Jiang, M., Shen, H., & Zhao, C. M. (2015). Analysis and optimization of P-LDPC coded RGB-LED-based VLC systems. IEEE Photonics Journal. https://doi.org/10.1109/Jphot.2015.2498541

    Article  Google Scholar 

  16. Wang, H., & Kim, S. (2019). Design of polar codes for run-length limited codes in visible light communications. IEEE Photonics Technology Letters, 31(1), 27–30. https://doi.org/10.1109/Lpt.2018.2881223

    Article  Google Scholar 

  17. Lee, S. H., & Kwon, J. K. (2012). Turbo code-based error correction scheme for dimmable visible light communication systems. IEEE Photonics Technology Letters, 24(17), 1463–1465. https://doi.org/10.1109/Lpt.2012.2199104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mert Bayraktar.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, M. Performance Analysis of Turbo Product Codes in Multipath Visible Light Communication Systems. Wireless Pers Commun 121, 3151–3161 (2021). https://doi.org/10.1007/s11277-021-08867-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08867-5

Keywords

Navigation