Skip to main content
Log in

Data Driven Approach for mmWave Channel Characteristics Prediction Using Deep Neural Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The elaborate architectures used in millimeter wave (mmWave) MIMO communication system make its channel characteristics prediction difficult. In this regard, we consider the problem of predicting the path power loss for both line of sight and non line of sight mmWave channels by employing deep learning (DL) based data driven model. The success of a DL technique depends on how well we train the model, which again relies on the training data. It is often hard to get the amount of data needed to build and train a model. The paper proposes a methodology to predict the channel characteristics using the available limited data. For this, the work effectively develops two deep learning models: Model 1: Autoencoder for creation of new data from the limited data and Model 2: Deep Convolutional Neural Network (DCNN) for channel characteristic prediction. Simulation results show that the proposed model 1 is able to generate more data in the desired direction and model 2 can accurately determine the path power loss associated with a mmWave channel, with very minimum error. The paper also demonstrates a method of extracting useful information using the constructed data driven model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Dataset and code will be shared upon acceptance of manuscript. Link to dataset and code: https://tinyurl.com/w3n95fjy.

References

  1. Xiao, M., Mumtaz, S., Huang, Y., Dai, L., Li, Y., Matthaiou, M., & Ghosh, A. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909–1935.

    Article  Google Scholar 

  2. Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676.

    Article  Google Scholar 

  3. Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-With a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230.

    Article  Google Scholar 

  4. Rumelhart, D., Hinton, G., & Williams, R. (1987). Learning internal representations by error propagation. In Parallel distributed processing: Explorations in the microstructure of cognition: Foundations (pp. 318–362). Cambridge.

  5. Wan, Z., Zhang, Y., & He, H. (2017). Variational autoencoder based synthetic data generation for imbalanced learning. In 2017 IEEE symposium series on computational intelligence (SSCI) (pp. 1–7).

  6. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  7. Qin, Z., Ye, H., Li, G. Y., & Juang, B. H. F. (2019). Deep learning in physical layer communications. IEEE Wireless Communications, 26(2), 93–99.

    Article  Google Scholar 

  8. Li, R., et al. (2017). Intelligent 5G: When cellular networks meet artificial intelligence. IEEE Wireless Communications, 24(5), 175–83.

    Article  MathSciNet  Google Scholar 

  9. Ye, H., Li, G. Y., & Juang, B.-H. (2017). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters, 7(1), 114–117.

    Article  Google Scholar 

  10. Dong, P., Zhang, H., Li, G. Y., NaderiAlizadeh, N., & Gaspar, I. S.. (2019). Deep CNN for wideband mmWave massive MIMO channel estimation using frequency correlation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4529–4533).

  11. Soltani, M., Pourahmadi, V., Mirzaei, A., & Sheikhzadeh, H. (2019). Deep learning based channel estimation. IEEE Communications Letters, 23(4), 652–655.

    Article  Google Scholar 

  12. He, H., Wen, C.-K., Jin, S., & Li, G. Y. (2018). Deep learning-based channel estimation for beamspace mmWave massive MIMO systems. IEEE Wireless Communications Letters, 7(5), 852–855.

    Article  Google Scholar 

  13. Jiang, W., & Schotten, H. D. (2020). Deep learning for fading channel prediction. IEEE Open Journal of the Communications Society, 1, 320–332.

    Article  Google Scholar 

  14. Wang, J., Ding, Y., Bian, S., Peng, Y., Liu, M., & Gui, G. (2019). UL-CSI data driven deep learning for predicting DL-CSI in cellular FDD systems. IEEE Access, 7, 96105–96112.

    Article  Google Scholar 

  15. Famoriji, O. J., Ogundepo, O. Y., & Qi, X. (2020). An intelligent deep learning-based direction-of-arrival estimation scheme using spherical antenna array with unknown mutual coupling. IEEE Access, 8, 179259–179271.

    Article  Google Scholar 

  16. Huang, H., Yang, J., Huang, H., Song, Y., & Gui, G. (2018). Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Transactions on Vehicular Technology, 67(9), 8549–8560.

    Article  Google Scholar 

  17. Nie, S., MacCartney, G. R., Sun, S., & Rappaport, T. S. (2013). 72 GHz millimeter wave indoor measurements for wireless and backhaul communications. IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 2429–2433).

  18. MacCartney, G. R., Zhang, J., Nie, S., & Rappaport, T. S. (2013). Path loss models for 5G millimeter wave propagation channels in urban microcells. IEEE Global Communications Conference (GLOBECOM).

  19. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G. N., Schulz, J. K., Samimi, M., & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 335–349.

  20. Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., Gutierrez, F. Jr, Hwang, D., & Rappaport, T. S. (2013). 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City. In IEEE International Conference on Communications (ICC) (pp. 5143–5147). Budapest.

  21. Maccartney, G. R., Rappaport, T. S., Samimi, M. K., & Sun, S. (2015). Millimeter wave omnidirectional path loss data for small cell 5G channel modeling. IEEE Access (pp. 1573–1580).

  22. MacCartney, G. R., Rappaport, T. S. (2014). 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. In IEEE International Conference on Communications (ICC) (4862–4867). Sydney.

  23. Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.

    Article  Google Scholar 

  24. Rappaport, Theodore S. (2002). Wireless communications-principles and practice, (The Book End). Microwave Journal, 45(12), 128–129.

    Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Neema M and E S Gopi. The first draft of the manuscript was written by Neema M and all authors commented on each versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Neema.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Code availability

Custom code developed in matlab for the work

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neema, M., Gopi, E.S. Data Driven Approach for mmWave Channel Characteristics Prediction Using Deep Neural Network. Wireless Pers Commun 120, 2161–2177 (2021). https://doi.org/10.1007/s11277-021-08768-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08768-7

Keywords

Navigation