Skip to main content
Log in

Automated Plant Leaf Disease Detection and Classification Using Fuzzy Based Function Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent years, the applications of the computer vision concepts and information communication technology has been observed in number of applications including home automation, healthcare, smart cities, precision agriculture etc. Internet of Things (IoT) is the underlying technology that indulges in almost all part of world infrastructure with the indispensable concept of connecting every device for collecting, contributing, experiencing, and analyzing the information. Smart or precision farming is known for achieving intelligence in agriculture. Therefore, in this article, an effort has been made towards automated disease detection from the plant leaves. For this a novel framework, a method named as IoT_FBFN using Fuzzy Based Function Network (FBFN) enabled with IoT has been proposed. At first, the images of leaf are acquired. Then these images are preprocessed and features are extracted using the Scale-invariant feature transform method. Finally, FBFN is used for the detection of the galls caused by the insect named as Pauropsyllatuberculate. The training process of the network is by optimizing with the help of Firefly algorithm, this increases the efficiency of the network. The proposed IoT_FBFN network having the computational power of fuzzy logic and learning adaptability of neural network achieves higher accuracy for identification and classification of galls when compared with the other approaches. The article concludes with the challenges encountered and future works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jin, J., Gubbi, J., Marusic, S., & Palaniswami, M. (2014). An information framework for creating a smart city through internet of things. IEEE Internet of Things Journal, 1(2), 112–121. https://doi.org/10.1109/JIOT.2013.2296516

    Article  Google Scholar 

  2. Stankovic, J. A. (2014). Research Directions for the Internet of Things. IEEE Internet of Things Journal, 1(1), 3–9. https://doi.org/10.1109/JIOT.2014.2312291

    Article  Google Scholar 

  3. Zhou, M., Fortino, G., Shen, W., Mitsugi, J., Jobin, J., Bhattacharyya, R. (2016) Internet of Things for Smart Automated Systems. IEEE Transactions on Automation Science and Engineering, 13(3), 1225–1229, https://doi.org/10.1109/TASE.2016.2579538.

  4. Nandhini, S. A., Hemalatha, R., Radha, S., & Indumathi, K. (2017). Web enabled plant disease detection system for agricultural applications using WMSN. Wireless Pers Commun. https://doi.org/10.1007/s11277-017-5092-4

    Article  Google Scholar 

  5. Popović, T., Latinović, N., Pešić, A., Zečević, Ž, Krstajić, B., & Djukanović, S. (2017). Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Computers and Electronics in Agriculture, 140, 255–265. https://doi.org/10.1016/j.compag.2017.06.008

    Article  Google Scholar 

  6. Talavera, J. M., Tobón, L. E., Gómez, J. A., Culman, M. A., Aranda, J. M., Parra, D. T., Quiroz, L. A., Hoyos, A., & Garreta, L. E. (2017). Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture, 142, 283–297. https://doi.org/10.1016/j.compag.2017.09.015

    Article  Google Scholar 

  7. Chouhan, S. S., Kaul, A., Singh, U. P., & Jain, S. (2018). Bacterial foraging optimization based Radial Basis Function Neural Network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards Plant Pathology. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2800685

    Article  Google Scholar 

  8. Kaur, S., Pandey, S., & Goel, S. (2018). Plants disease identification and classification through leaf images: A survey. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-018-9255-6

    Article  Google Scholar 

  9. Chouhan, S. S., Kaul, A., & Singh, U. P. (2018). Image segmentation using computational intelligence techniques: Review. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-018-9257-4

    Article  Google Scholar 

  10. Xu, L., Collier, R., & O’Hare, G. M. (2017). A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet of Things Journal, 4(5), 1229–1249. https://doi.org/10.1109/JIOT.2017.2726014

    Article  Google Scholar 

  11. Xu, G., Ngai, E. C. H., & Liu, J. (2018). Ubiquitous transmission of multimedia sensor data in Internet of Things. IEEE Internet of Things Journal, 5(1), 403–414. https://doi.org/10.1109/JIOT.2017.2762731

    Article  Google Scholar 

  12. Pan, J., & McElhannon, J. (2018). Future edge cloud and edge computing for internet of things applications. IEEE Internet of Things Journal, 5(1), 439–449. https://doi.org/10.1109/JIOT.2017.2767608

    Article  Google Scholar 

  13. Ding, G. (2018). An amateur drone surveillance system based on the cognitive Internet of Things. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2017.1700452

    Article  Google Scholar 

  14. Yang, C., Shen, W., & Wang, X. (2018). The Internet of Things in manufacturing key issues and potential applications. IEEE Systems, Man, & Cybernetics Magazine. https://doi.org/10.1109/MSMC.2017.2702391

    Article  Google Scholar 

  15. Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi.org/10.1016/j.biosystemseng.2017.09.007

    Article  Google Scholar 

  16. Mohanraj, I., Ashokumar, K. and Naren, J. “Field Monitoring and Automation using IOT in Agriculture Domain,” 6th International Conference On Advances In Computing & Communications, ICACC 2016, pp. 931–939, https://doi.org/10.1016/j.procs.2016.07.275.

  17. Karim, F., Karim, F. Monitoring system using web of things in precision agriculture. The 12th International Conference on Future Networks and Communications (FNC 2017), 402–409, https://doi.org/10.1016/j.procs.2017.06.083.

  18. Kaloxylos, A., Wolfert, J., Verwaart, T., Terol, C.M., Brewster, C., Robbemond, R. and Sundmaker, H. (2013) The use of future internet technologies in the agriculture and food sectors: integrating the supply chain. 6th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2013), 51–60, https://doi.org/10.1016/j.protcy.2013.11.009.

  19. J Yu, W Zhang (2013) Study on Agricultural Condition Monitoring and Diagnosing of Integrated Platform Based on the Internet of Things. CCTA 2012, Part I, IFIP AICT 392, 2012, 244–250

  20. Zhou, L., Song, L., Xie, C., Zhang, J. (2013) Applications of Internet of Things in the Facility Agriculture. CCTA, Part I, IFIP AICT 392, 2012, 297–303.

  21. M. J. Gomes. The Internet of Things as an Integrated Service Platform to Increase Value to the Agriculture Stakeholders. Putting Tradition into Practice: Heritage, Place and Design, Lecture Notes in Civil Engineering3, https://doi.org/10.1007/978-3-319-57937-5.

  22. Abouzahir, S., Sadik, M. Sabir, E. (2017) IoT-empowered smart agriculture: A real-time light-weight embedded segmentation system, UNet 2017, LNCS 10542, 319–332, https://doi.org/10.1007/978-3-319-68179-5_28

  23. Zhang, R., Hao, F., & Sun, X. (2017). The design of agricultural machinery service management system based on Internet of Things. Procedia Computer Science, 107, 53–57. https://doi.org/10.1016/j.procs.2017.03.055

    Article  Google Scholar 

  24. Zhang, S., Wang, H., Huang, W., & You, Z. (2018). Plant diseased leaf segmentation and recognition by fusion of superpixel, K-means and PHOG. Optik, 157, 866–872. https://doi.org/10.1016/j.ijleo.2017.11.190

    Article  Google Scholar 

  25. Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges”. Computers and Electronics in Agriculture, 118, 66–84. https://doi.org/10.1016/j.compag.2015.08.011

    Article  Google Scholar 

  26. Khyade, M. S., Kasote, D. M., & Vaikos, N. P. (2014). Alstonia scholaris (L.) R.Br. and Alstonia macrophylla Wall. Ex G. Don: A comparative review on traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology, 153, 1–18. https://doi.org/10.1016/j.jep.2014.01.025

    Article  Google Scholar 

  27. Pratap, B., Chakraborthy, G. S., & Mogha, N. (2013). Complete Aspects Of Alstonia Scholaris. International Journal of PharmTech Research, 5(1), 17–26.

    Google Scholar 

  28. Khatale, Vaishali Laxman, & More, D. B. (2016). A Review on Saptaparna (Alstonia Scholaris R. Br). International Ayurvedic Medical Journal, 4(03), 334–337.

    Google Scholar 

  29. Muhammad, S., Khan, Z., Zaheer, A., Siddiqui, M. F., Masood, M. F., & Sarangzai, A. M. (2014). Alstonia Scholaris (L.) R.Br. - Planted Bioindicator along different Road-Sides of Lahore City. Pak. J. Bot., 46(3), 869–873.

    Google Scholar 

  30. Kumar, S. R., Arumugam, T., Anandakumar, C., Balakrishnan, S., & Rajavel, D. (2013). Use of plant species in controlling environmental pollution- a review. Bull. Env. Pharmacol. Life Sci., 2(2), 52–63.

    Google Scholar 

  31. Talukdar, P., Das, K., Dhar, S., Talapatra, S. N., & Swarnakar, S. (2016). Galls on Alstonia scholarisleaves as air pollution indicator. World Scientific News, 52, 181–194.

    Google Scholar 

  32. Albert, S., Padhiar, A., Gandhi, D., & Nityanand, P. (2011). “Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris(Apocynaceae). Revista Brasil Bot, 34(3), 343–358.

    Article  Google Scholar 

  33. Saini, D., & Sarin, R. (2012). “SDS-PAGE Analysis of Leaf Galls of Alstonia scholaris (L.) R. Br. J Plant Pathol Microb. https://doi.org/10.4172/2157-7471.1000121

    Article  Google Scholar 

  34. Charfi, N., Trichili, H., Alimi, A. M., & Solaiman, B. (2017). Bimodal biometric system for hand shape and palmprint recognition based on SIFT sparse representation. Multimed Tools Appl, 76, 20457–20482. https://doi.org/10.1007/s11042-016-3987-9

    Article  Google Scholar 

  35. Patil, S. B., & Sinha, G. R. (2017). “Distinctive Feature Extraction for Indian Sign Language (ISL) Gesture using Scale Invariant Feature Transform (SIFT). J. Inst. Eng. India Ser. B, 98(1), 19–26. https://doi.org/10.1007/s40031-016-0250-8

    Article  Google Scholar 

  36. Agarwal, V., & Bhanot, S. (2017). Radial basis function neural network-based face recognition using firefly algorithm. Neural Comput & Applic. https://doi.org/10.1007/s00521-017-2874-2

    Article  Google Scholar 

  37. Kora, P. (2017). ECG based Myocardial Infarction detection using Hybrid Firefly Algorithm. Computer Methods and Programs in Biomedicine, 152, 141–148. https://doi.org/10.1016/j.cmpb.2017.09.015

    Article  Google Scholar 

  38. Ariyaratne, M. K. A., & Fernando, T. G. I. (2014). A comparative study on nature inspired algorithms with firefly algorithm. International Journal of Engineering and Technology, 4(10), 611–617.

    Google Scholar 

  39. Kaur, M., & Ghosh, S. (2016). Network reconfiguration of unbalanced distribution networks using fuzzy-firefly algorithm. Applied Soft Computing, 49, 868–886. https://doi.org/10.1016/j.asoc.2016.09.019

    Article  Google Scholar 

  40. Lin, C.-K. (2005). Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 35(2), 197–297. https://doi.org/10.1109/TSMCB.2004.842246

    Article  Google Scholar 

  41. Mar, J., Kuo, C. C., & Lou, L. S. (2012). FBFN-based pointing error correction architecture in wind-force environments. IEEE Antennas and Wireless Propagation Letters, 11, 559–563.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by grant No. 8-68/FDC/RPS (POLICY-1/2019/20) from the All India Council of Technical Education (AICTE), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Pratap Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, S.S., Singh, U.P. & Jain, S. Automated Plant Leaf Disease Detection and Classification Using Fuzzy Based Function Network. Wireless Pers Commun 121, 1757–1779 (2021). https://doi.org/10.1007/s11277-021-08734-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08734-3

Keywords

Navigation