Skip to main content
Log in

Mutual Information Feature Selection (MIFS) Based Crop Yield Prediction on Corn and Soybean Crops Using Multilayer Stacked Ensemble Regression (MSER)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Crop yield prediction model helps the farmers in order to make better decisions about the appropriate time to cultivate the crops and what types of crops to be cultivated based on environmental factors to produce better yield. Advanced ensemble regression crop yield prediction model is to predict the crop yield based on the phenotype factors includes precipitation, solar radiation, maximum temperature, minimum temperature etc. The corn and soybean crops dataset includes 38 years of yield performance data collected across 105 different locations. Comparative analysis made between correlation and mutual information on the basis of feature selection. Most related features towards crop yield and achieved better predictions on crop yield though mutual information. Our proposed mutual information based advanced ensemble regression technique involved in the prediction process of crop yield on corn and soybean crops and achieved good prediction accuracy based on phenotype factors. The predicted yield performance of advanced ensemble regression crop prediction model outperformed several supervised machine learning and advanced ensemble learning algorithms. Various regression accuracy parameter metrics such as mean absolute error, mean square error and root mean square error are also involved in performance measures. Our prediction results also ensure that weather and crop management parameters are most influential towards crop yield prediction rather than soil parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Torky, M., & Hassanein, A. E. (2020). Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Computers and Electronics in Agriculture, 178, 1168–1699. https://doi.org/10.1016/j.compag.2020.105476

    Article  Google Scholar 

  2. Ampatzidis, Y., Partel, V., & Costa, L. (2020). Agroview: Cloud-based application to process, analyze and visualize UAV-collected data for precision agriculture applications utilizing artificial intelligence. Computers and Electronics in Agriculture, 174, 105457. https://doi.org/10.1016/j.compag.2020.105457

    Article  Google Scholar 

  3. Pandiyaraju, V., Logambigai, R., Ganapathy, S., & Kannan, A. (2020). An energy efcient routing algorithm for WSNs using intelligent fuzzy rules in precision agriculture. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07024-8

    Article  Google Scholar 

  4. Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2020). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 70, 15–22. https://doi.org/10.1016/j.copbio.2020.09.003

    Article  Google Scholar 

  5. Zhang, S., Huang, W., & Wang, H. (2020). Crop disease monitoring and recognizing system by soft computing and image processing models. Multimedia Tools and Applications, 79(41), 30905–30916. https://doi.org/10.1007/s11042-020-09577-z

    Article  Google Scholar 

  6. Iniyan, S., Jebakumar, R., Mangalraj, P., Mayank, M., & Aroop, N. (2020). Plant disease identification and detection using support vector machines and artificial neural networks. In S. S. Dash, C. Lakshmi, S. Das, & B. K. Panigrahi (Eds.), Artificial intelligence and evolutionary computations in engineering systems AISC 2020 (Vol. 1056, pp. 15–27). Springer. https://doi.org/10.1007/978-981-15-0199-9_2.

  7. Sharif, M., & Jebakumar, R. (2020). Iniyan S 2020 Iot based hybrid plant disease detection for yields enhancement. European Journal of Molecular & Clinical Medicine, 7(8), 2134–2153.

    Google Scholar 

  8. Joel, S., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641. https://doi.org/10.3390/agronomy10050641

    Article  Google Scholar 

  9. Verma, S., Bhatia, A., Chug, A., & Singh, A. P. (2020). Recent advancements in multimedia big data computing for IOT applications in precision agriculture: Opportunities, issues, and challenges. Multimedia Big Data Computing for IOT Applications. https://doi.org/10.1007/978-981-13-8759-3_15

    Article  Google Scholar 

  10. Ju, S., & Hyoungioon, J. H. (2019) Machine learning approaches for crop yield prediction with MODIS and weather data. In 40th Asian conference on remote sensing: Progress of remote sensing technology for smart future, ACRS, Daejeon, South Korea.

  11. Ahmad, I., Ullah, A., & MH ur Rahman, J Judge, . (2018). Yield forecasting of spring maize using remote sensing and crop modeling in Faisalabad-Punjab, Pakistan. Journal of the Indian Society of Remote Sensing, 46(10), 1701–1711. https://doi.org/10.1007/s12524-018-0825-8

    Article  Google Scholar 

  12. PCharoen-Ung, S., & Mittrapiyanuruk, P. (2018). Sugarcane yield grade prediction using random forest with forward feature selection and hyper-parameter tuning. In H. Unger, S. Sodsee, & P. Meesad (Eds.), IC2IT: International conference on computing and information technology (AISC) (Vol. 769, pp. 33–42). Springer. https://doi.org/10.1007/978-3-319-93692-5_4.

  13. Xu, X., Gao, P., Zhu, X., Guo, W., Ding, J., Li, C., Zhu, M., & Wu, X. (2019). Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China. Ecological Indicators, 101, 943–953. https://doi.org/10.1016/j.ecolind.2019.01.059

    Article  Google Scholar 

  14. Filippi, P., & Jones, E. J. (2019). An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precision Agriculture, 20, 1015–1029. https://doi.org/10.1007/s11119-018-09628-4

    Article  Google Scholar 

  15. Kouadio, L., & Deo, R. C. (2018). Adamowski: Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Computers and Electronics in Agriculture, 155, 324–338. https://doi.org/10.1016/j.compag.2018.10.014

    Article  Google Scholar 

  16. Zhong, H., Li, X., Lobell, D. B., Ermon, S., & Brandeau, M. L. (2018). Hierarchical modeling of seed variety yields and decision making for future planting plans. Environment Systems and Decisions, 38, 458–470. https://doi.org/10.1007/s10669-018-9695-4

    Article  Google Scholar 

  17. Goldstein, A., Fink, L., Meitin, A., Bohadana, S., & Lutenberg, O. R. (2018). Gilad: Applying machine learning on sensor data for irrigation recommendations: Revealing the agronomist’s tacit knowledge. Precision Agriculture, 19(3), 421–444. https://doi.org/10.1007/s11119-017-9527-4

    Article  Google Scholar 

  18. Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., Timlin, D. J., Shim, K.-M., Gerber, J. S., & Reddy, V. R. (2016). Random forests for global and regional crop yield predictions. PLoS ONE, 11(6), e0156571. https://doi.org/10.1371/journal.pone.0156571

    Article  Google Scholar 

  19. Pantazi, X. E., Moshou, D., Alexandridis, T., Whetton, R. L., & Mouazen, A. M. (2016). Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, 121, 57–65. https://doi.org/10.1016/j.compag.2015.11.018

    Article  Google Scholar 

  20. Guo, W. W., & Xue, H. (2014). Crop yield forecasting using artificial neural networks: A comparison between spatial and temporal models. Mathematical Problems in Engineering, 2014, 1–7. https://doi.org/10.1155/2014/857865

    Article  Google Scholar 

  21. Moodley, P., Rorke, D. C. S., & Kana, E. B. G. (2019). Development of artificial neural network tools for predicting sugar yields from inorganic salt-based pre-treatment of lignocellulose biomass. Bioresource Technology, 273, 682–686. https://doi.org/10.1016/j.biortech.2018.11.034

    Article  Google Scholar 

  22. Kuwata, K., & Shibasaki, R. (2015). Estimating crop yields with deep learning and remotely sensed data. In IEEE international geoscience and remote sensing symposium (IGARSS) (pp. 858–861). https://doi.org/10.1109/IGARSS.2015.7325900.

  23. Drummond, S. T., Sudduth, K. A., Joshi, A., Birrell, S. J., & Kitchen, N. R. (2003). Statistical and neural methods for site specific yield prediction. Transactions of the ASAE, 46, 5. https://doi.org/10.13031/2013.12541

    Article  Google Scholar 

  24. Mahabadi, N. Y. (2018). Use of the intelligent models to predict the rice potential production. International Academic Journal of Politics and Law, 5, 14–25.

    Google Scholar 

  25. Baskar, M., Ramkumar, J., Rathore, R., & Kabra, R. (2020). A deep learning based approach for automatic detection of bike riders with no helmet and number plate recognition. International Journal of Advanced Science and Technology, 29(4), 1844–1854.

    Google Scholar 

  26. Nosratabadi, S., Szell, K., Beszedes, B., Imre, F., Ardabili, S., & Mosavi, A. (2020). Hybrid machine learning models for crop yield prediction. arXiv preprint http://arxiv.org/abs/2005.04155.

  27. Arulananth, T. S., Baskar, M., & Sateesh, R. (2019). Human face detection and recognition using contour generation and matching algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 16(2), 709–714.

    Article  Google Scholar 

  28. Kang, Y., Ozdogan, M., Zhu, X., Ye, Z., Hain, C., & Anderson, M. (2020). Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environmental Research Letters, 15, 064005. https://doi.org/10.1088/1748-9326/ab7df9

    Article  Google Scholar 

  29. Khaki, S., Wang, L., & Archontoulis, S. V. (2020). A CNN–RNN framework for crop yield prediction. Frontiers in Plant Science, 10, 1750. https://doi.org/10.3389/fpls.2019.01750

    Article  Google Scholar 

  30. Khaki, S., & Wang, L. (2019). Crop yield prediction using deep neural networks. Frontiers in Plant Science, 10, 621. https://doi.org/10.3389/fpls.2019.00621

    Article  Google Scholar 

  31. USDA—National Agricultural Statistics Service. https://www.nass.usda.gov/.

  32. Thornton, P., Thornton, M., Mayer, B., Wei, Y., & Devarakonda, R.Vose:Daymet: Daily surface weather data on a 1-km grid for North America, Version 3. (ORNL Distributed Active Archive Center). https://doi.org/10.3334/ORNLDAAG/1328.

  33. Soil Survey Staff. Gridded Soil Survey Geographic (gSSURGO) Database for the United States of America and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS (United States Department of Agriculture, Natural Resources Conservation Service). https://gdg.sc.egov.usda.gov/.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Iniyan.

Ethics declarations

Conflict of interest

We authors not having any conflict of interest among ourselves to submit and publish our articles in Wireless Personal Communications journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iniyan, S., Jebakumar, R. Mutual Information Feature Selection (MIFS) Based Crop Yield Prediction on Corn and Soybean Crops Using Multilayer Stacked Ensemble Regression (MSER). Wireless Pers Commun 126, 1935–1964 (2022). https://doi.org/10.1007/s11277-021-08712-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08712-9

Keywords

Navigation