Skip to main content
Log in

Hardware Efficient Architectural Design for Physical Layer Security in Wireless Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The Wireless communication technology is an integral part of our day to day life. Since it is developed, secured transmission, error rate, energy, speed and cost of execution are the major issues faced by present techniques. A Hardware Efficient Secure Channel Coding Scheme for Physical Layer Security (HESCC-PLS) is designed to be incorporated and use a method named Extended Difference Family (EDF) Semi-Cyclic Low-Density Parity-Check (SC LDPC) code. The system architecture of the cryptochannel coder includes the design of several matrices for parity control, generator, scrambler, key stream generator and key based permutation. The cryptosystem is designed in such a manner that for each message block, the intentional error vector and the encryption are different so that the proposed architecture is safe from all typical attacks. The proposed system achieves a very high-performance ratio with minimum bit error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Not Applicable.

Code Availability

Not Applicable.

References

  1. Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K. K., & Gao, X. (2018). A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 36(4), 679–695.

    Article  Google Scholar 

  2. Chen, X., Ng, D. W. K., Gerstacker, W. H., & Chen, H. H. (2016). A survey on multiple-antenna techniques for physical layer security. IEEE Communications Surveys & Tutorials, 19(2), 1027–1053.

    Article  Google Scholar 

  3. Liu, Y., Chen, H. H., & Wang, L. (2016). Physical layer security for next generation wireless networks: Theories, technologies, and challenges. IEEE Communications Surveys & Tutorials, 19(1), 347–376.

    Article  Google Scholar 

  4. Liu, Y., Qin, Z., Elkashlan, M., Gao, Y., & Hanzo, L. (2017). Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Transactions on Wireless Communications, 16(3), 1656–1672.

    Article  Google Scholar 

  5. Chen, J., Yang, L., & Alouini, M. S. (2018). Physical layer security for cooperative NOMA systems. IEEE Transactions on Vehicular Technology, 67(5), 4645–4649.

    Article  Google Scholar 

  6. Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2018). Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Communications Surveys & Tutorials, 21(2), 1773–1828.

    Article  Google Scholar 

  7. Chen, J., Liang, Y. C., Pei, Y., & Guo, H. (2019). Intelligent reflecting surface: A programmable wireless environment for physical layer security. IEEE Access: Practical Innovations, Open Solutions, 7, 82599–82612.

    Article  Google Scholar 

  8. Wang, H. M., Zheng, T. X., Yuan, J., Towsley, D., & Lee, M. H. (2016). Physical layer security in heterogeneous cellular networks. IEEE Transactions on Communications, 64(3), 1204–1219.

    Article  Google Scholar 

  9. Skorin-Kapov, N., Furdek, M., Zsigmond, S., & Wosinska, L. (2016). Physical-layer security in evolving optical networks. IEEE Communications Magazine, 54(8), 110–117.

    Article  Google Scholar 

  10. Poor, H. V., & Schaefer, R. F. (2017). Wireless physical layer security. Proceedings of the National Academy of Sciences, 114(1), 19–26.

  11. Chen, D., Zhang, N., Lu, R., Fang, X., Zhang, K., Qin, Z., & Shen, X. (2018). An LDPC code based physical layer message authentication scheme with prefect security. IEEE Journal on Selected Areas in Communications, 36(4), 748–761.

    Article  Google Scholar 

  12. Chen, Z., Yin, L., Pei, Y., & Lu, J. (2016). CodeHop: Physical layer error correction and encryption with LDPC-based code hopping. Science China Information Sciences, 59(10), 102309.

    Article  Google Scholar 

  13. Kwon, K., Kim, T., & Heo, J. (2016). Pre-coded LDPC coding for physical layer security. EURASIP Journal on Wireless Communications and Networking, 2016(1), 283.

    Article  Google Scholar 

  14. Taieb, M. H., & Chouinard, J. Y. (2017). Physical layer security using BCH and LDPC codes with adaptive granular HARQ. In 2017 IEEE Conference on communications and network security (CNS) (pp. 564–569). IEEE.

  15. Zhang, M., & Wu, R. (2019). Constructing QC-LDPC codes based on dimension reduction for physical layer security. In 2019 IEEE symposium on computers and communications (ISCC) (pp. 1–6). IEEE.

  16. Mazin, A., Davaslioglu, K., & Gitlin, R. D. (2017). Secure key management for 5G physical layer security. In 2017 IEEE 18th wireless and microwave technology conference (WAMICON) (pp. 1–5). IEEE.

  17. Horiike, N., Okamoto, E., & Yamamoto, T. (2017). Performance improvement of chaos MIMO transmission scheme by LDPC code concatenation using symbol MAP detection and STBC. In 2017 international conference on information networking (ICOIN) (pp. 200–205). IEEE.

  18. Sharma, H., Kumar, N., & Panigrahi, B. K. (2019). Physical layer security of AMI data transmission in smart grid environment. In 2019 IEEE Globecom workshops (GC Wkshps) (pp. 1–6). IEEE.

  19. Benzid, D., Kadoch, M., & Cheriet, M. (2019, June). Raptor Code based on punctured LDPC for Secrecy in Massive MiMo. In 2019 15th international wireless communications & mobile computing conference (IWCMC) (pp. 1884–1889). IEEE.

  20. Lu, Y. W., Zheng, Z. L., & Hou, X. Y. (2017, November). Modified decoding algorithm of LDPC codes for physical-layer key reconciliation. In 2017 4th international conference on systems and informatics (ICSAI) (pp. 996–1000). IEEE.

  21. Huang, Y., Li, W., & Lei, J. (2018). Concatenated physical layer encryption scheme based on rateless codes. IET Communications, 12(12), 1491–1497.

    Article  Google Scholar 

  22. Huth, C., Guillaume, R., Strohm, T., Duplys, P., Samuel, I. A., & Güneysu, T. (2016). Information reconciliation schemes in physical-layer security: A survey. Computer Networks, 109, 84–104.

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pradeep.

Ethics declarations

Conflict of interest

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep, R., Kanimozhi, R. Hardware Efficient Architectural Design for Physical Layer Security in Wireless Communication. Wireless Pers Commun 120, 1821–1836 (2021). https://doi.org/10.1007/s11277-021-08536-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08536-7

Keywords

Navigation