Skip to main content
Log in

Design and Analysis of a Bandpass Filter Using Dual Composite Right/Left Handed (D-CRLH) Transmission Line Showing Bandwidth Enhancement

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact, low-profile, Band Pass Filter (BPF) based on balanced Dual Composite Right/Left Handed (D-CRLH) Transmission Line (TL) is proposed in this article. A balanced D-CRLH TL can be used to provide wideband filter characteristics due to no frequency separation between the RH and LH frequency bands. The proposed D-CRLH TL is designed using U-shaped complementary split-ring resonator (UCSRR). The extraction of equivalent circuit model of the proposed structure is also performed. The proposed filter provides a 3 dB passband range from 2.44 to 5.58 GHz. Further, the bandwidth is enhanced by introducing a slot in UCSRR, which resulted in a 3 dB passband range from 1.43 to 5.56 GHz. The proposed via less BPF has a compact size of 15 \(\times\) 15 mm\(^{2}\) designed on an FR-4 substrate with dielectric constant (\(\epsilon _r\)) = 4.3. The design analysis of the proposed bandpass filter is presented in terms of reflection coefficient, transmission coefficient, propagation constant and group delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Xu, K. D., Li, D., & Liu, Y. (2019). High-selectivity wideband bandpass filter using simple coupled lines with multiple transmission poles and zeros. IEEE Microwave and Wireless Components Letters, 29(2), 107–109. https://doi.org/10.1109/LMWC.2019.2891203.

    Article  Google Scholar 

  2. Garg, P., Awasthi, S., & Jain, P. (2018). A survey of microwave bandpass filter using coupled line resonator—Research design and development. In 2018 International conference on sustainable energy, electronics, and computing systems (SEEMS) (pp. 1-9). Greater Noida. https://doi.org/10.1109/SEEMS.2018.8687341.

  3. Feng, W., Gao, X., Che, W., & Xue, Q. (2015). Bandpass filter loaded with open stubs using dual-mode ring resonator. IEEE Microwave and Wireless Component Letters, 25(5), 295–297. https://doi.org/10.1109/LMWC.2015.2410174.

    Article  Google Scholar 

  4. Liu, L., Zhang, P., Weng, M. H., Tsai, C. Y., & Yang, R. Y. (2019). A miniaturized wideband bandpass filter using quarter-wavelength stepped-impedance resonators. Electronics, 8(12), 1540. https://doi.org/10.3390/electronics8121540.

    Article  Google Scholar 

  5. Sassi, I., Talbi, L., & Hettak, K. (2016). Compact bandpass filters based on linked hexagonal-omega resonators. Microwave and Optical Technology Letters, 58(5), 1049–1052. https://doi.org/10.1002/mop.29720.

    Article  Google Scholar 

  6. Nasraoui, H., Mouhsen, A., El Aoufi, J., & Taouzari, M. (1999). Novel microstrip low pass filter based on complementary split-ring resonators. International Journal of Modern Communication Technologies and Research, 2(10), 265760.

    Google Scholar 

  7. Bonache, J., Posada, G., Carchon, G., De Raedt, W., & Martn, F. (2007). Compact (\(<\) 0.5 \(mm^2\)) K-band metamaterial bandpass filter in MCM-D technology. Electronics Letters, 43(5), 288–290. https://doi.org/10.1049/el:20073891.

  8. Caloz, C., & Itoh, T. (2005). Electromagnetic metamaterials: Transmission line theory and microwave applications. John Wiley & Sons.

  9. Yang, S., Chen, Y., Yu, C., Lu, G., Li, B., Wang, L., et al. (2019). Super compact and ultra-wideband bandpass filter with a wide upper stopband based on a SCRLH transmission-line unit-cell and two lumped capacitors. Journal of Electromagnetic Waves and Applications, 33(3), 350–366. https://doi.org/10.1080/09205071.2018.1552538.

    Article  Google Scholar 

  10. Choudhary, D. K., & Chaudhary, R. K. (2018). A compact via-less metamaterial wideband bandpass filter using split circular rings and rectangular stub. Progress In Electromagnetics Research, 72, 99–106. https://doi.org/10.2528/pierl17092503.

    Article  Google Scholar 

  11. Caloz, C. (2006). Dual composite right/left-handed (D-CRLH) transmission line metamaterial. IEEE Microwave and Wireless Components Letters, 16(11), 585–587. https://doi.org/10.1109/LMWC.2006.884773.

    Article  Google Scholar 

  12. Gonzalez-Posadas, V., Jimnez-Martn, J. L., Parra-Cerrada, A., Garca-Munoz, L. E., & Segovia-Vargas, D. (2010). Dual-composite right left-handed transmission lines for the design of compact diplexers. IET Microwaves, Antennas & Propagation, 4(8), 982–990. https://doi.org/10.1049/iet-map.2009.0571.

    Article  Google Scholar 

  13. Kholodnyak, D., Turgaliev, V., & Zameshaeva, E. (2015, March). Dual-band immittance inverters on dual-composite right/left-handed transmission line (D-CRLH TL). In 2015 German microwave conference (pp. 60–63). IEEE. https://doi.org/10.1109/GEMIC.2015.7107752

  14. Wu, G. C., Wang, G., & Wang, Y. W. (2013). Novel simplified dual-composite right/left-handed transmission line and its application in bandpass filter with dual notch bands. Progress in Electromagnetics Research, 44, 123–131. https://doi.org/10.2528/pierc13082602.

    Article  Google Scholar 

  15. Belenguer, A., Cascon, J., Borja, A. L., Esteban, H., & Boria, V. E. (2012). Dual composite right-/left-handed coplanar waveguide transmission line using inductively connected split-ring resonators. IEEE Transactions on Microwave Theory and Techniques, 60(10), 3035–3042. https://doi.org/10.1109/TMTT.2012.2210438.

    Article  Google Scholar 

  16. Cano, L. M., Borja, A. L., Boria, V. E., & Belenguer, A. (2016). Highly versatile coplanar waveguide line with electronically reconfigurable bandwidth and propagation characteristics. IEEE Transactions on Microwave Theory and Techniques, 65(1), 128–135. https://doi.org/10.1109/TMTT.2016.2613526.

    Article  Google Scholar 

  17. Computer Simulation Technology Microwave Studio (CST MWS). Available at http://www.cst.com (online)

  18. Advanced Design System (ADS), Keysight EEs of EDA. (2011). Available at http://www.keysight.com (online).

  19. Baena, J. D., Bonache, J., Martn, F., Sillero, R. M., Falcone, F., Lopetegi, T., et al. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1451–1461. https://doi.org/10.1109/TMTT.2005.845211.

    Article  Google Scholar 

  20. Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71(3), 036617. https://doi.org/10.1103/PhysRevE.71.036617.

    Article  Google Scholar 

  21. Falcone, F., Lopetegi, T., Laso, M. A. G., Baena, J. D., Bonache, J., Beruete, M., et al. (2004). Babinet principle applied to the design of metasurfaces and metamaterials. Physical Review Letters, 93(19), 197401. https://doi.org/10.1103/PhysRevLett.93.197401.

    Article  Google Scholar 

  22. Bahl, I. J., & Bhartia, P. (2003). Microwave solid state circuit design. John Wiley & Sons.

  23. Ying, X., & Alphones, A. (2005). Propagation characteristics of complimentary split ring resonator (CSRR) based EBG structure. Microwave and Optical Technology Letters, 47(5), 409–412. https://doi.org/10.1002/mop.21185.

    Article  Google Scholar 

  24. Tang, M. C., Shi, T., & Tan, X. (2016). A novel triple-mode hexagon bandpass filter with meander line and central-loaded stub. Microwave and Optical Technology Letters, 58(1), 9–12. https://doi.org/10.1002/mop.29483.

    Article  Google Scholar 

  25. Becharef, K., Nouri, K., Kandouci, H., Bouazza, B. S., Damou, M., & Bouazza, T. H. C. (2020). Design and simulation of a broadband bandpass filter based on complementary split ring resonator circular “CSRRs”. Wireless Personal Communications, 111(3), 1341–1354. https://doi.org/10.1007/s11277-019-06918-6.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Jain.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, P., Jain, P. Design and Analysis of a Bandpass Filter Using Dual Composite Right/Left Handed (D-CRLH) Transmission Line Showing Bandwidth Enhancement. Wireless Pers Commun 120, 1705–1720 (2021). https://doi.org/10.1007/s11277-021-08529-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08529-6

Keywords

Navigation