Skip to main content
Log in

A Proficient Fair Resource Allocation in the Channel of Multiuser Orthogonal Frequency Division Multiplexing using a Novel Hybrid Bat-Krill Herd Optimization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The wireless communication system in the present generation address more challenges because of priority based Resource Allocation (RA) to Real-Time (RT), Best Effort (BE), as well as Non-Real Time (NRT) users in the Wi-Max (Worldwide Inter-operability for Microwave Access) network. Furthermore, the fall of packet and data overflow became an excessive problem in the network. To address this problem, Multi-Input and Multi-Output based Orthogonal Frequency Division Multiplexing (MIMO-OFDM) channel is introduced but in some cases, it also met some challenges in resource allocation strategy. Therefore, this research is to emphasize the Quality of Service (QoS) and prevents data flooding in nodes by the proposed Detain Permissive Network (DPN) model. Furthermore, a novel Hybrid Bat and Krill Herd Optimization (HB-KHO) is proposed for the DPN to allocate the resources based on the priority of users in the MIMO-OFDM channel based Wi-Max network. The execution of the proposed method is carried out in NS-2 platform. The simulation outcome has been attained the finest priority-based resource allocation in terms of better fairness, throughput, and Packet Delivery Ratio (PDR). Moreover, the outcome from the novel proposed technique is compared with existing resource allocation techniques and the comparison shows that the proposed technique is effectively allocated resources to all users in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Deepa, T., & Mathur, H. (2019). Performance analysis of digitized orthogonal frequency division multiplexing system for future wireless communication. Wireless Personal Communications, 109(4), 2239–2250. https://doi.org/10.1007/s11277-019-06678-3

    Article  Google Scholar 

  2. Daoud, O. R. (2018). Modified orthogonal frequency division multiplexing technique: A candidate for the new generation of wireless systems. Wireless Personal Communications, 100(3), 1047–1061. https://doi.org/10.1007/s11277-018-5608-6

    Article  Google Scholar 

  3. Kimura, R., Monma, A., Duan, J., & Uesugi, M. (2006). Block-orthogonal frequency division multiplexing in multi-path fading channel. Wireless Personal Communications, 38(1), 27–42. https://doi.org/10.1007/s11277-006-9026-9

    Article  Google Scholar 

  4. Saadat, A., Salman, M., & Ajaz, M. A. (2015). Matched filter based timing and frequency synchronization for multiple input multiple output orthogonal frequency division multiplexing systems. Wireless Personal Communications, 82(1), 245–266. https://doi.org/10.1007/s11277-014-2206-0

    Article  Google Scholar 

  5. Han, C., & Akyildiz, I. F. (2016). Distance-aware bandwidth-adaptive resource allocation for wireless systems in the terahertz band. IEEE Transactions on Terahertz Science and Technology, 6(4), 541–553. https://doi.org/10.1109/TTHZ.2016.2569460

    Article  Google Scholar 

  6. Odhah, N. A., Hassan, E. S., Abdelnaby, M., Al-Hanafy, W. E., Dessouky, M. I., Alshebeili, S. A., & El-Samie, F. E. A. (2015). Adaptive resource allocation algorithms for multi-user MIMO-OFDM systems. Wireless Personal Communications, 80(1), 51–69. https://doi.org/10.1007/s11277-014-1994-6

    Article  Google Scholar 

  7. Sun, Y. H., Huang, Q., & Tang, W. (2017). Research on adaptive resource allocation of indoor MIMO-OFDM visible light communication system. DEStech Transactions on Computer Science and Engineering (cimns). https://doi.org/10.12783/dtcse/2017/17387

    Article  Google Scholar 

  8. Xu, J., Lee, S. J., Kang, W. S., & Seo, J. S. (2010). Adaptive resource allocation for MIMO-OFDM based wireless multicast systems. IEEE Transactions on Broadcasting, 56(1), 98–102. https://doi.org/10.1109/TBC.2009.2039691

    Article  Google Scholar 

  9. Hindumathi, V., & Reddy, K. R. L. (2018). Delay aware optimal resource allocation in MU MIMO-OFDM using enhanced spider monkey optimization. International Journal of Communication Networks and Information Security, 10(2), 410–418

    Google Scholar 

  10. Li, M., Chen, Z., & Tan, Y. P. (2011). A maxmin resource allocation approach for scalable video delivery over multiuser mimo-ofdm systems. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (pp. 2645–2648). IEEE. DOI: https://doi.org/10.1109/ISCAS.2011.5938148.

  11. Adian, M. G., & Aghaeinia, H. (2016). Low complexity resource allocation in MIMO-OFDM-based cooperative cognitive radio networks. Transactions on Emerging Telecommunications Technologies, 27(1), 92–100. https://doi.org/10.1002/ett.2799

    Article  Google Scholar 

  12. Budihal, S. V., Kumari, B., & Saroja, V. S. (2019). User Location-Based Adaptive Resource Allocation for ICI Mitigation in MIMO-OFDMA. In: International Conference on Computer Networks and Communication Technologies (pp. 203–215). Singapore: Springer. https://doi.org/https://doi.org/10.1007/978-981-10-8681-6_20.

  13. Shin, Y. I., Kang, T. S., & Kim, H. M. (2007). An efficient resource allocation for multiuser MIMO-OFDM systems with zero-forcing beam former. In: 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1–5). IEEE. DOI: https://doi.org/10.1109/PIMRC.2007.4394219.

  14. She, C., Yang, C., & Liu, L. (2015). Energy-efficient resource allocation for MIMO-OFDM systems serving random sources with statistical QoS requirement. IEEE Transactions on Communications, 63(11), 4125–4141. https://doi.org/10.1109/TCOMM.2015.2480770

    Article  Google Scholar 

  15. Zhao, Y., Li, X., Li, Y., & Ji, H. (2013). Resource allocation for high-speed railway downlink MIMO-OFDM system using quantum-behaved particle swarm optimization. In: 2013 IEEE International Conference on Communications (ICC) (pp. 2343–2347). IEEE. DOI: https://doi.org/10.1109/ICC.2013.6654880.

  16. Alsahag, A. M., Ali, B. M., & Noordin, N. K. (2014). Fair uplink bandwidth allocation and latency guarantee for mobile WiMAX using fuzzy adaptive deficit round robin. Journal of network and computer applications, 39, 17–25. https://doi.org/10.1016/j.jnca.2013.04.004

    Article  Google Scholar 

  17. Dalton, G. A., Rajan, T. J., & Louis, A. B. V. (2013). An efficient dynamic channel allocation algorithm for Wi-MAX networks. International Journal of Computer Applications, 66(15), 18–23

    Google Scholar 

  18. Afzali, M., AbuBakar, K., & Lloret, J. (2019). Adaptive resource allocation for WiMAX mesh network. Wireless Personal Communications, 107(2), 849–867. https://doi.org/10.1007/s11277-019-06305-1

    Article  Google Scholar 

  19. Gholamrezaee, A., Farrokhi, H., & Moghaddam, J. Z. (2019). Fairness resource allocation for MIMO OFDM-based multicast system using GA/PSO. Journal of Iranian Association of Electrical and Electronics Engineers., 17(1), 69–77

    Google Scholar 

  20. Tao, X., Jiang, C., Liu, J., Xiao, A., Qian, Y., & Lu, J. (2018). QoE driven resource allocation in next generation wireless networks. IEEE Wireless Communications, 26(2), 78–85. https://doi.org/10.1109/MWC.2018.1800022

    Article  Google Scholar 

  21. Liu, Z., Zhang, P., Chan, K. Y., Li, L., & Guan, X. (2019). Robust resource allocation for rates maximization using fuzzy estimation of dynamic channel states in OFDMA femtocell networks. Computer Networks, 159, 110–124. https://doi.org/10.1016/j.comnet.2019.05.007

    Article  Google Scholar 

  22. Afif, M., Hassen, W. B., & Tabbane, S. (2019). A resource allocation algorithm for throughput maximization with fairness increase based on virtual PRB in MIMO-OFDMA systems. Wireless Networks, 25(3), 1083–1097. https://doi.org/10.1007/s11276-018-1680-9

    Article  Google Scholar 

  23. Zhang, X., Zhang, X., & Wu, Z. (2020). Utility-and fairness-based spectrum allocation of cellular networks by an adaptive particle swarm optimization algorithm. IEEE Transactions on Emerging Topics in Computational Intelligence, 4, 42–50. https://doi.org/10.1109/TETCI.2018.2881490

    Article  Google Scholar 

  24. De La Fuente, A., & Femenias, G. (2018). Subband CQI feedback-based multicast resource allocation in MIMO-OFDMA networks. IEEE Transactions on Broadcasting, 64(4), 846–864. https://doi.org/10.1109/TBC.2018.2789578

    Article  Google Scholar 

  25. Thangaramya, K., Kulothungan, K., & Indira Gandhi, S. (2020). Intelligent fuzzy rule-based approach with outlier detection for secured routing in WSN. Soft Computing. https://doi.org/10.1007/s00500-020-04955-z

    Article  Google Scholar 

  26. Panayirci, E., Senol, H., & Poor, H. V. (2010). Joint channel estimation, equalization, and data detection for OFDM systems in the presence of very high mobility. IEEE Transactions on Signal Processing, 58(8), 4225–4238. https://doi.org/10.1109/TSP.2010.2048317

    Article  MathSciNet  MATH  Google Scholar 

  27. Chinnadurai, S., Selvaprabhu, P., & Jeong, Y. (2017). User clustering and robust beamforming design in multicell MIMO-NOMA system for 5G communications. AEU-International Journal of Electronics and Communications, 78, 181–191. https://doi.org/10.1016/j.aeue.2017.05.021

    Article  Google Scholar 

  28. Sharma, S., & Singh, H. (2017). An effectual approach for security and integrity against wicked node attacks in Wi-Max network environment. Indian Journal of Science and Technology, 10, 27

    Google Scholar 

  29. Kumar, D., & Priyameenal, V. (2011). Adaptive packet scheduling algorithm for real-time services in Wi-MAX networks. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), IEEE. DOI: https://doi.org/10.1109/ICRTIT.2011.5972248.

  30. Hindumathi, V., & Reddy, K. R. L. (2019). Adaptive priority-based fair-resource allocation for MIMO-OFDM multicast networks. International Journal of Networking and Virtual Organisations, 20(1), 73–89. https://doi.org/10.1504/IJNVO.2019.096609

    Article  Google Scholar 

  31. Sharma, A., Kaushal, M., & Khehra, B. S. (2017). Proposal and evaluation of a fuzzy logic-driven resource allocation mechanism. International Journal of Fuzzy Systems, 19(2), 383–399. https://doi.org/10.1007/s40815-016-0185-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Hindumathi.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hindumathi, V., Reddy, K.R.L. A Proficient Fair Resource Allocation in the Channel of Multiuser Orthogonal Frequency Division Multiplexing using a Novel Hybrid Bat-Krill Herd Optimization. Wireless Pers Commun 120, 1449–1473 (2021). https://doi.org/10.1007/s11277-021-08519-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08519-8

Keywords

Navigation