Abstract
Vehicular adhoc networks are slowly gaining importance as the demand for faster communication increases. The vehicular nodes need to communicate securely via an established and effective route. Control and protocol information between the vehicles is transmitted using the technique of broadcasting. The nodes are never stagnant and even though their energy rarely dissipates, the high mobility of the nodes poses quite a problem. Lack of an established infrastructure is a major issue and needs to be addressed in order to achieve maximum performance. We have designed a novel waterfall model focusing on a robust broadcasting method. The OLSR protocol is enhanced using a robust MPR technique, which helps in mitigating the circulation of duplicate packets within the network. The RMPR subset of the OLSR protocol is capable of handling transmission errors and the hidden and exposed terminal problems prevalent in the VANET environment. The inclusion of a waterfall model enables the proposed technique to maximize throughput and minimize the delay in the network. The waterfall model works in two major phases. The first phase incorporates the Cognitive radio scheme for effective channel allocation and utilization.The RMPR technique is implemented in the second phase which focuses on utilizing the neighbor nodes to transmit the packets successfully towards the destination. The RMPR scheme aims to categorize the neighboring nodes as either one hop or 2-hop neighboring nodes. Additionally, the uncategorized nodes are further probed to find a second subset of 2-hop nodes which would speed up the transmission. The implementation of these two important phases into the classic waterfall model helps to streamline the activities and helps in streamlining the network activities.The proposed waterfall model RMPR technique is analyzed with protocols like MMPR–OLSR and the OLSR protocols to determine the effectiveness of the proposed protocol. The performance analysis is carried out using the NS2 simulator. The techniques that are compared are evaluated using major network parameters like throughput, delay, PDR and channel utilization. It is evident that the proposed protocol is able to maximize the PDR than the existing techniques.
This is a preview of subscription content, access via your institution.















References
Ramkumar, J., & Vadivel, R. (2020). Improved wolf prey inspired protocol for routing in cognitive radio ad hoc networks. International Journal of Computer Networks and Applications., 7(5), 126–136. https://doi.org/10.22247/ijcna/2020/202977
Pokhrel, K., Dutta, N., Ghose, M. K., & Sarma, H. K. D. (2020). Performance analysis of various mobility management protocols for IPv6 based networks. International Journal of Computer Networks and Applications., 7(3), 62–81. https://doi.org/10.22247/ijcna/2020/196039
Usha, M., & Ramakrishnan, B. (2019). MCTRP—An energy efficient tree routing protocol for vehicular ad hoc network using genetic whale optimization algorithm. Journal of Wireless Personal Communication, 110, 185–206
Sathiamoorthy, J., & Ramakrishnan, B. (2017). STFDR: Architecture of competent protocol for efficient route discovery and reliable transmission in CEAACK MANETs. Journal of Wireless Personal Communication, 97, 5817–5839
Liang, O., Sekercioglu, Y. A., & Mani, N. (2006). A survey of multipoint relay based broadcast schemes in wireless ad hoc networks. IEEE Communications Surveys and Tutorials, 8(4), 30–46
Jayaraman, U. M. S., & Bhagavathiperumal, R. (2018). A trusted waterfall framework based peer to peer protocol for reliable and energy efficient data transmission in MANETs. Wireless Personal Communication, 95(2), 95–124
Xu, H., Wu, X., Sadjadpour, H. R., & Garcia-Luna-Aceves, J. (2010). A unified analysis of routing protocols in MANETs. IEEE Transactions on Communications, 58(3), 911–922
Shahi, G. S., Batth, R. S., & Egerton, S. (2020). A comparative study on efficient path finding algorithms for route planning in smart vehicular networks. International Journal of Computer Networks and Applications, 7(5), 157–166. https://doi.org/10.22247/ijcna/2020/204020
Javed, S., Furqan-ul-Islam, & A. A. Pirzada (2009). Performance analysis of OLSR protocol in amobile ad hoc wireless network. In International conference on computer control and communication, Karachi, Pakistan.
Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547
Usha, M., & Ramakrishnan, B. (2019). CSVANET: cuckoo search for efficient optimal path selection with QoS. Journal of Applied Science and Computations, 6(5), 1785
Usha, M., & Ramakrishnan, B. (2019). An enhanced MPR OLSR protocol for efficient node selection process in cognitive radio based VANET. Wireless Personal Communications, 106(2), 763–787
Bai, Y., Liu, Y., & Yuan, D. (2010). An optimized method for minimum MPRs selection based on node density. In International conference on wireless communications networking and mobile computing, Chengdu, China.
Liu, H., Jia, X., Wan, P.-J., Liu, X., & Yao, F. F. (2007). A distributed and efficient flooding scheme using 1-hop information in mobile ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 18(5), 658–671
Le, T. D., & Choo, H. (2009). Towards an efficient flooding scheme exploiting 2-hop backward information in MANETs. The IEICE Transactions on Communications, E92-B(4), 1199–1209
Usha, M., & Ramakrishnan, B. (2019). A robust architecture of the OLSR protocol for channel utilization and optimized transmission using minimal multi point relay selection in VANET. Wireless Personal Communications, 109(1), 271–295
Jacquet, P., Laouiti, A., Minet, P., & Viennot, L. (2001). Performance analysis of OLSR multipoint relay flooding in two ad hoc wireless network models. In: INRIA RR-4260.
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2007). IEEE Std. 802.11.
Usha, M., Sathiamoorthy, J., Ashween, R., & Ramakrishnan, B. N. (2020). EEMCCP-A novel architecture protocol design for efficient data transmission in underwater acoustic wireless sensor network. International Journal of Computer Networks and Applications, 7(2), 28–42
Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2011). CBVANET: A cluster based vehicular adhoc network model for simple highway communication. International Journal of Advanced Networking and Applications, 02(04), 755–761
Ramakrishnan, B. (2013). Analysis of Manhattan mobility model without RSUs. Journal of Computer Engineering IOSR-JCE, 9(5), 82–90
Joe, M. M., & Ramakrishnan, B. (2015). WVANET: Modelling a novel web based communication architecture for vehicular network. Wireless Personal Communications, 85(4), 1987–2001
Joe, M. M., & Ramakrishnan, B. (2016). Review of vehicular ad hoc network communication models including WVANET (Web VANET) model and WVANET future research directions. Wireless Networks, 22(7), 2369–2386
Joe, M. M., & Ramakrishnan, B. (2017). Novel authentication mechanism for checking node reliability in web vehicular ad hoc network. International Journal of Wireless and Mobile Computing, 13(2), 87–96
Joe, M. M., Shaji, R. S., & Ashok Kumar, K. (2013). Establishing inter vehicle wireless communication in VANET and preventing it from hackers. International Journal of Computer Network and Information Security, 5(8), 55
Ramakrishan, B., Joe, M. M., & Bhagavath Nishanth, R. (2014). Modeling and simulation of efficient cluster based Manhattan mobility model for vehicular communication. Journal of Emerging Technologies in Web Intelligence, 6(2), 253–261
Usha, M., & Ramakrishnan, B. (2019). Robust MPR: A novel algorithm for secure and efficient data transmission in VANET. Journal of Wireless Personal Communication, 110, 355–380
Ahn, J. H. et al. (2015). MAC-Aware concentrated multi-point relay selection algorithm. Wireless Personal Communications, Online 05 Aug 2015.
Jayaraman, U. M. S., & Bhagavathiperumal, R. (2018). A three layered peer-to-peer energy efficient protocol for reliable and secure data transmission in EAACK MANETs. Wireless Personal Communication, 102(1), 201–227
Usha, M., & Ramakrishnan, B. (2019). An enhanced MPR OLSR protocol for efficient node selection process in cognitive radio based VANET. Wireless Personal Communications, 106, 763–787
J. Sathiamoorthy, B. Ramakrishnan, Usha M. (2015) A reliable and secure data transmission in CEAACK MANETs using distinct dynamic key with classified Digital signature cryptographic algorithm. In: IEEE international conference on computing and communications technologies (ICCCT).
Sathiamoorthy, J., & Ramakrishnan, B. (2016). CEAACK: A reduced acknowledgment for better data transmission for MANETs. International Journal of Computer Network and Information Security, 2, 64–71
Sathiamoorthy, J., & Ramakrishnan, B. (2016). Energy and delay efficient dynamic cluster formation using improved ant colony optimization algorithm in EAACK MANETs. Journal of Wireless Personal Communication, 95, 1531–1552
Sathiamoorthy, J., & Ramakrishnan, B. (2015). Energy and delay efficient dynamic cluster formation using hybrid AGA with FACO in EAACK. Journal of Wireless Networks, 23, 371–385
Sathiamoorthy, J., Ramakrishnan, B., & Usha, M. (2015). Design of a competent broadcast algorithm for reliable transmission in CEAACK MANETs. Journal of Network Communications and Emerging Technologies, 5(1), 144–151
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors do not have any conflict of interest.
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jayaraman, S., Mohanakrishnan , U. & Ramakrishnan, A. A Trusted Water Fall Model for Efficient Data Transmission in VANET. Wireless Pers Commun 120, 821–848 (2021). https://doi.org/10.1007/s11277-021-08492-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-021-08492-2