Skip to main content

Advertisement

Log in

A Novel Approach for QoS Enhancement with Revision Scheme Using SeDSR Protocol in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless Sensor Networks (WSNs) is an emerging technology that pays more attention to the monitoring and acquiring of data in a deployed environment. Sensor networks often perform end to end transmission, so strong requirements should be defined to avoid data loss. The strong requirements may be precisely defined in terms of Quality of Service (QoS). The data transmission resumed, and the routing mechanism performed a vital role to forward the packets. The route path cache requires a crucial responsibility for on-demand routing standards that enhance the Quality of Service. The path identification stage is employed in the on-demand routing standard. The path identification scheme defines the path cache policies that are employed to move packet forwarding in an efficient manner. Therefore, the intention is to design a fresh scheme for path cache revisions. In a traditional scheme, nodes are little aware of path faults and they are engaged in the routing by revising their routing table. While SeDSR, based on the scattered cache substitution scheme, the source node relays the path fault data of the size of 50 bytes to all their adjacencies. Therefore, all the adjacency substitutes the stale path in their cache. The designed scheme enhances the performance employing diverse QoS metrics such as Packet loss, energy utilization, packet delivery and End to End delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu, Y., Ota, K., Zhang, K., Ma, M., Xiong, N., Liu, A., & Long, J. (2018). QTSAC: an energy-efficient mac protocol for delay minimization in wireless sensor networks. IEEE Access, 6, 8273–8291. https://doi.org/10.1109/ACCESS.2018.2809501.

    Article  Google Scholar 

  2. Mehta, D., & Saxena, S. (2020). MCH-EOR: Multi-objective Cluster Head Based Energy-aware Optimized Routing algorithm in Wireless Sensor Networks. Sustainable Computing: Informatics and Systems, 28, 100406. https://doi.org/10.1016/j.suscom.2020.100406.

    Article  Google Scholar 

  3. Joe, I. (2006). Energy Efficiency Maximization for Wireless Sensor Networks. In G. Pujolle (Ed.), Mobile and wireless communication networks. MWCN 2006. IFIP The International Federation for Information Processing. (211th ed.). Springer: Boston, MA.

    Google Scholar 

  4. Wang, F., Wu, S., Wang, K., & Hu, X. (2016). Energy-efficient clustering using correlation and random update based on data change rate for wireless sensor networks. IEEE Sensors Journal, 16(13), 5471–5480. https://doi.org/10.1109/JSEN.2016.2561283.

    Article  Google Scholar 

  5. Abusaimeh, H., & Yang, S. H. (2009). Dynamic cluster head for lifetime efficiency in WSN. International Journal of Automation and Computing, 6, 48. https://doi.org/10.1007/s11633-009-0048-0.

    Article  Google Scholar 

  6. Wang, L., Yang, Y., & Zhao, W. (2012). Network coding-based multipath routing for energy efficiency in wireless sensor networks. Journal on Wireless Communication and Networking, 2012, 115. https://doi.org/10.1186/1687-1499-2012-115.

    Article  Google Scholar 

  7. Khalifeh, A., Abid, H., & Darabkh, K. A. (2020). Optimal cluster head positioning algorithm for wireless sensor networks. Sensors, 20(13), 3719.

    Article  Google Scholar 

  8. Slama I., Jouaber B., Zeghlache D. (2009) Multiple Mobile Sinks Deployment for Energy Efficiency in Large Scale Wireless Sensor Networks. In: J. Filipe, MS. Obaidat (eds) Communications in Computer and Information Science. Springer: Berlin

  9. G. Xiong, L. Hong and Y. Guangyou, “Improving energy efficiency by optimizing relay nodes deployment in wireless sensor networks”, 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou, 2017, pp.306–310,https://doi.org/10.1109/ICCSN.2017.8230125

  10. Thirukrishna, J. T., Karthik, S., & Arunachalam, V. P. (2018). Revamp energy efficiency in homogeneous wireless sensor networks using optimized radio energy algorithm and power-aware distance source routing protocol. Future Generation Computer System, 81, 331–339. https://doi.org/10.1016/j.future.2017.11.042.

    Article  Google Scholar 

  11. Wang, X., Liu, X., Wang, Z., Li, R., & Wu, Y. (2020). SVM+KF Target Tracking Strategy Using the Signal Strength in Wireless Sensor Networks. Sensors, 20, 3832.

    Article  Google Scholar 

  12. Thirukrishna, J. T., Amrutha, G. C., Preethi, A., & Kavya Bai, N. (2019). Gesture controlled home. International Journal of Management, Technology and Engineering, 9(6), 3222–3227.

    Google Scholar 

  13. Lin, J., Xiao, W., Lewis, E. L., & Xie, L. (2009). Energy-efficient distributed adaptive multi-sensor scheduling for target tracking in wireless sensor networks. IEEE Transactions on instrument and measurement, 58(6), 1886–1896.

    Article  Google Scholar 

  14. Prithi, S., & Sumathi, S. (2020). LD2FA-PSO: A novel learning dynamic deterministic finite automata with PSO algorithm for secured energy efficient routing in wireless sensor network. Ad Hoc Networks, 97, 102024. https://doi.org/10.1016/j.adhoc.2019.102024.

    Article  Google Scholar 

  15. S. Senthil kumar, JT. Thirukrishna, . (2020). OREA for improving data packet transmission in wireless sensor networks with cloud security mechanism. International Journal of Cloud Computing, 9(23), 245–257. https://doi.org/10.1504/IJCC.2020.109379.

    Article  Google Scholar 

  16. Gu, Y., & Wu, Q. (2010). Optimization of cluster heads for energy efficiency in large-scale wireless sensor networks. In J. Zheng, S. Mao, S. F. Midkiff, & H. Zhu (Eds.), Ad Hoc Networks. ADHOCNETS 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. (Vol. 28). Heidelberg: Springer, Berlin.

    Google Scholar 

  17. Kleinschmidt, J. H. (2013). Analyzing and improving the energy efficiency of IEEE 802.15.4 wireless sensor networks using retransmissions and custom coding. Telecommunication System, 53, 239–245. https://doi.org/10.1007/s11235-013-9692-3.

    Article  Google Scholar 

  18. Tavli, B., Bagci, I. E., & Ceylan, O. (2010). Optimal data compression and forwarding in wireless sensor networks. IEEE Communications Letters, 14(5), 408–410. https://doi.org/10.1109/LCOMM.2010.05.092372.

    Article  Google Scholar 

  19. Wang, Y., Yang, W., Han, R., Xu, L., & Zhao, H. (2020). An analytical framework for the IEEE 802154 MAC layer protocol under periodic traffic. Sensors, 20, 3350.

    Article  Google Scholar 

  20. Xiu-wu, Y. U., Hao, Y. U., Yong, L., & Ren-rong, X. (2020). A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor networks. Computer Networks, 167, 106994. https://doi.org/10.1016/j.comnet.2019.106994.

    Article  Google Scholar 

  21. N. Sazak, I. Erturk, E. Koklukaya and M. Cakiroglu, "Impact of active node determination approach for energy efficiency in WSN MAC protocol design," 3rd International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Budapest, 2011, pp. 1–5.

  22. Senthil Kumar, S., & Thirukrishna, J. T. (2020). An efficient QoS based data packet transmission in wireless sensor networks using OREA. Wireless Personal Communication. https://doi.org/10.1007/s11277-020-07295-1.

    Article  Google Scholar 

  23. René Bergelt, Wolfram Hardt, An Event-based Local Action Model for Queriable Wireless Sensor Actuator Networks, Software Telecommunications and Computer Networks (SoftCOM) International Conference on, pp. 1–6, 2019.

  24. Lazarou, G. Y., Li, J., & Picone, J. (2007). A cluster-based power-efficient MAC scheme for event-driven sensing applications. Ad Hoc Networks, Elsevier, 5(7), 1017–1030.

    Article  Google Scholar 

  25. Khan, M. I., Gansterer, W. N., & Haring, G. (2013). Static vs mobile sink: the influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36(9), 965–978. https://doi.org/10.1016/j.comcom.2012.10.010.

    Article  Google Scholar 

  26. Hongyan Wang, Yoichi Ishizuka, Takafumi Fujimoto (2019) Energy Efficiency for Cooperative MIMO Wireless Sensor Networks with Optimal Constellation Size under MPSK Modulation Scheme, Computational Electromagnetics (ICCEM 2019) IEEE International Conference on, pp. 1–3.

  27. Albaladejo, C., Sánchez, P., Iborra, A., Soto, F., López, J. A., & Torres, R. (2010). Wireless sensor networks for oceanographic monitoring a systematic review. Sensors, 10, 6948–6968. https://doi.org/10.3390/s100706948.

    Article  Google Scholar 

  28. Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: a survey. IEEE Communications Magazine, 44(4), 115–121 (Pubitemid 43792677).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Kumar Swami Durai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durai, S.K.S., Duraisamy, B. & Thirukrishna, J.T. A Novel Approach for QoS Enhancement with Revision Scheme Using SeDSR Protocol in Wireless Sensor Networks. Wireless Pers Commun 120, 401–417 (2021). https://doi.org/10.1007/s11277-021-08466-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08466-4

Keywords

Navigation