Skip to main content
Log in

Location-Based Explosion Detection in Wireless Optical Pressure Sensor Networks Using Bat Optimization Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Explosion detection is one the important issues to protect people's lives from terrorist attacks. Technological advances have significantly reduced the possibility of terrorist attacks. One of the technologies that improved the explosion detection accuracy is Wireless Sensor Networks (WSN), which has gained researches’ attention. WSN is widely used in medical systems, industries and military systems to collect data from sensor nodes placed in particular locations. For precise and high speed communications, optical sensor nodes are widely used recently. In this paper, the main objective is to detect explosion in an optical pressure sensor network. To meet this goal, an evolutionary algorithm, Bat Optimization Algorithm, is employed. The proposed method results in reducing energy consumption and improving the service quality. Simulation results indicates the superiority of the proposed algorithm for explosion detection in compare to previous methods proposed for the same problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Al-Mousawi, A. J. (2020). Magnetic explosives detection system (MEDS) based on wireless sensor network and machine learning. Measurement, 151, 107112. https://doi.org/10.1016/j.measurement.2019.107112.

    Article  Google Scholar 

  2. Al-Turjman, F. (2019). The road towards plant phenotyping via WSNs: An overview. Computers and Electronics in Agriculture, 161, 4–13.

    Article  Google Scholar 

  3. Al-Mousawi, A. J., & Al-Hassani, H. K. (2018). A survey in wireless sensor network for explosives detection. Computers and Electrical Engineering, 72, 682–701.

    Article  Google Scholar 

  4. Gao, N., Guo, X., Deng, J., Cheng, B., & Hou, H. (2021). Elastic wave modulation of double-leaf ABH beam embedded mass oscillator. Applied Acoustics, 173, 107694.

    Article  Google Scholar 

  5. Zenggang, X., Zhiwen, T., Xiaowen, C., Xue-min, Z., Kaibin, Z., & Conghuan, Y. (2019). Research on image retrieval algorithm based on combination of color and shape features. Journal of Signal Processing Systems, 93, 1–8.

    Google Scholar 

  6. Ding, L., Li, S., Gao, H., Chen, C., & Deng, Z. (2018). Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(7), 2512–2523.

    Article  Google Scholar 

  7. Ding, L., et al. (2020). Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain. IEEE Transactions on Robotics, 36(3), 894–909.

    Article  Google Scholar 

  8. Zhou, Y., Tian, L., Zhu, C., Jin, X., & Sun, Y. (2019). Video coding optimization for virtual reality 360-degree source. IEEE Journal of Selected Topics in Signal Processing, 14(1), 118–129.

    Article  Google Scholar 

  9. Sikimić, M., Amović, M., Vujović, V., Suknović, B., & Manjak, D. (2020). An overview of wireless technologies for IoT network. In 2020 19th international symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–6.

  10. Rathore, R., & Hussain, M. (2015). Simple, secure, efficient, lightweight and token based protocol for mutual authentication in wireless sensor networks. In N. Shetty, N. Prasad, & N. Nalini (Eds.), Emerging research in computing, information, communication and applications (pp. 451–462). New Delhi: Springer.

    Chapter  Google Scholar 

  11. Sisi, Z., & Souri, A. (2021) Blockchain technology for energy-aware mobile crowd sensing approaches in Internet of Things. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.4217.

    Article  Google Scholar 

  12. Queiroz, D. V., Alencar, M. S., Gomes, R. D., Fonseca, I. E., & Benavente-Peces, C. (2017). Survey and systematic mapping of industrial Wireless Sensor Networks. Journal of Network and Computer Applications, 97, 96–125.

    Article  Google Scholar 

  13. Mohamed, S. M., Hamza, H. S., & Saroit, I. A. (2017). Coverage in mobile wireless sensor networks (M-WSN): A survey. Computer Communications, 110, 133–150.

    Article  Google Scholar 

  14. Fu, X., & Yang, Y. (2020). Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks. Reliability Engineering and System Safety, 197, 106815.

    Article  Google Scholar 

  15. Gao, N., Wang, B., Lu, K., & Hou, H. (2021). Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure. Applied Acoustics, 177, 107906.

    Article  Google Scholar 

  16. Hoera, C., Kiontke, A., Pahl, M., & Belder, D. (2018). A chip-integrated optical microfluidic pressure sensor. Sensors Actuators B Chemistry, 255, 2407–2415.

    Article  Google Scholar 

  17. Yan, J., Pu, W., Zhou, S., Liu, H., & Greco, M. S. (2020). Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks. IEEE Transactions on Signal Processing, 68, 4055–4068.

    Article  MATH  Google Scholar 

  18. Takada, Y., et al. (2015). Automated trace-explosives detection for passenger and baggage screening. IEEE Sensors Journal, 16(5), 1119–1129.

    Article  Google Scholar 

  19. Zhao, J., Liu, J., Jiang, J., & Gao, F. (2020). Efficient deployment with geometric analysis for mmWave UAV communications. IEEE Wireless Communication Letters, 9(7), 1115–1119.

    Google Scholar 

  20. Hu, J., et al. (2020). A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments. Frontiers of Information Technology and Electronic Engineering, 21, 675–692.

    Article  Google Scholar 

  21. Ma, H. J., & Xu, L. X. (2020). Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2020.3014292.

    Article  Google Scholar 

  22. Chidella, K. K., Asaduzzaman, A., & Mashhadi, F. (2017) Prior detection of explosives to defeat tragic attacks using knowledge based sensor networks. In 2017 ninth annual IEEE green technologies conference (GreenTech), pp. 283–289.

  23. Haider, S., Saeed, U., Ashraf, J., & Zafar, D. (2020). Explosive material detection and security alert system (e-DASS). arXiv Prepr. arXiv2001.08585.

  24. Soomro, A. H., & Jilani, M. T. (2020). Application of IoT and Artificial Neural Networks (ANN) for Monitoring of Underground Coal Mines. In 2020 international conference on information science and communication technology (ICISCT), pp. 1–8. https://doi.org/10.1109/ICISCT49550.2020.9080034

  25. Alindayo, L. A., & Jabian, M. E. (2020). Wireless sensor network development: Explosion locator using artificial neural network. International Journal of Advanced Science and Convergence 2(2).

  26. Kumar, R. K., & Murali, G. (2016). A survey on the present state-of-the-art of explosives, detection methods and automatic explosive detection using wireless sensor network. International Journal of Applied Engineering Research, 11(1), 504–510.

    Article  Google Scholar 

  27. Simi, S., & Ramesh, M. V. (2010). Real-time monitoring of explosives using wireless sensor networks. In Proceedings of the 1st Amrita ACM-W celebration on women in computing in India, pp. 1–7.

  28. Divya, R., & Santhoshi, G. P. (2011). INZEDS: An integrated explosive detection system using Zigbee based wireless sensor network and nanotechnology. In International conference on computing and communication systems, pp. 330–336.

  29. Priyadarshini, R. R., & Sivakumar, N. (2018). Cluster head selection based on minimum connected dominating set and bi-partite inspired methodology for energy conservation in WSNs. Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2018.08.009.

    Article  Google Scholar 

  30. Yadav, A., Kumar, S., & Vijendra, S. (2018). Network life time analysis of WSNs using particle swarm optimization. Procedia Computer Science, 132, 805–815.

    Article  Google Scholar 

  31. Mohanty, P., & Kabat, M. R. (2016). Energy efficient structure-free data aggregation and delivery in WSN. Egyptian Informatics Journal, 17(3), 273–284.

    Article  Google Scholar 

  32. Mohamadi, H., Salleh, S., Razali, M. N., & Marouf, S. (2015). A new learning automata-based approach for maximizing network lifetime in wireless sensor networks with adjustable sensing ranges. Neurocomputing, 153, 11–19.

    Article  Google Scholar 

  33. Alibeiki, A., Motameni, H., & Mohamadi, H. (2019). A new genetic-based approach for maximizing network lifetime in directional sensor networks with adjustable sensing ranges. Pervasive and Mobile Computing, 52, 1–12.

    Article  Google Scholar 

  34. Mohamadi, H., Salleh, S., & Razali, M. N. (2014). Heuristic methods to maximize network lifetime in directional sensor networks with adjustable sensing ranges. Journal of Network and Computer Applications, 46, 26–35.

    Article  Google Scholar 

  35. Rossi, A., Singh, A., & Sevaux, M. (2013). Lifetime maximization in wireless directional sensor network. European Journal of Operational Research, 231(1), 229–241.

    Article  Google Scholar 

  36. Castaño, F., Rossi, A., Sevaux, M., & Velasco, N. (2018). An exact approach to extend network lifetime in a general class of wireless sensor networks. Information Science (Ny), 433, 274–291.

    Article  MathSciNet  MATH  Google Scholar 

  37. Safara, F., Souri, A., Baker, T., Al Ridhawi, I., & Aloqaily, M. (2020). PriNergy: A priority-based energy-efficient routing method for IoT systems. The Journal of Supercomputing, 76, 1–18.

    Article  Google Scholar 

  38. Fang, W., Song, X., Wu, X., Sun, J., & Hu, M. (2018). Novel efficient deployment schemes for sensor coverage in mobile wireless sensor networks. Information Fusion, 41, 25–36.

    Article  Google Scholar 

  39. Yan, F., Ma, W., Shen, F., Xia, W., & Shen, L. (2020). Connectivity based k-coverage hole detection in wireless sensor networks. Mobile Networks and Applications, 25(2), 783–793. https://doi.org/10.1007/s11036-019-01301-y.

    Article  Google Scholar 

  40. More, A., & Raisinghani, V. (2017). A survey on energy efficient coverage protocols in wireless sensor networks. Journal of King Saud University Science, 29(4), 428–448.

    Google Scholar 

  41. Wang, L., Huang, Y., Xie, Y., & Du, Y. (2020). A new regularization method for dynamic load identification. Science Progress, 103(3), 0036850420931283.

    Article  Google Scholar 

  42. Qian, J., et al. (2020). Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Optics Letters, 45(7), 1842–1845.

    Article  Google Scholar 

  43. Zhang, J., Sun, J., Chen, Q., & Zuo, C. (2020). Resolution analysis in a lens-free on-chip digital holographic microscope. IEEE Transactions on Computational Imaging, 6, 697–710.

    Article  Google Scholar 

  44. Sun, G., Li, C., & Deng, L. (2021). An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Computing & Applications. https://doi.org/10.1007/s00521-021-05708-1.

    Article  Google Scholar 

  45. Li, B.-H., Liu, Y., Zhang, A.-M., Wang, W.-H., & Wan, S. (2020). A survey on blocking technology of entity resolution. Journal of Computer Science and Technology, 35(4), 769–793.

    Article  Google Scholar 

  46. He, L., Chen, Y., Zhao, H., Tian, P., Xue, Y., & Chen, L. (2018). Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. Science of the Total Environment, 627, 1585–1601.

    Article  Google Scholar 

  47. Mi, C., Cao, L., Zhang, Z., Feng, Y., Yao, L., & Wu, Y. (2020). A port container code recognition algorithm under natural conditions. Journal of Coastal Research, 103, 822–829.

    Article  Google Scholar 

  48. Bai, B., Guo, Z., Zhou, C., Zhang, W., & Zhang, J. (2021). Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering. Information Sciences (Ny), 546, 42–59.

    Article  MathSciNet  MATH  Google Scholar 

  49. Elhoseny, M., Tharwat, A., Farouk, A., & Hassanien, A. E. (2017). K-Coverage model based on genetic algorithm to extend WSN lifetime. IEEE Sensors Letters, 1(4), 1–4. https://doi.org/10.1109/LSENS.2017.2724846.

    Article  Google Scholar 

  50. Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges. Materials (Basel), 13(24), 5755.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renze Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, R., Li, G., Fan, S. et al. Location-Based Explosion Detection in Wireless Optical Pressure Sensor Networks Using Bat Optimization Algorithm. Wireless Pers Commun 127, 845–868 (2022). https://doi.org/10.1007/s11277-021-08442-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08442-y

Keywords

Navigation