A Novel Resource Allocation for SWIPT-NOMA Enabled AF Relay Based Cooperative Network

Abstract

In this work, a novel resource allocation scheme is proposed to find the optimal time-switching and power-splitting factors in a SWIPT assisted non-orthogonal multiple access (NOMA) relay network with combined time switching and power splitting protocol. The system model consists of a source node broadcasting a multiplexed NOMA signal to the far and near user via an amplify-and-forward energy harvesting relay node in a Rayleigh-flat-fading channel environment. Here, effective SNR maximization at both the near and far users is formulated as an optimization problem under total transmit power constraint and to deal with this both the Lagrangian multiplier approach and differential-evolution algorithm have been exploited. Furthermore, performance study is presented about the comparison of proposed scheme with the fixed allocation scheme in terms of outage probability under the impact of distinct target rates, relay locations, and channel conditions. Finally, the simulation results signify the performance improvement in the system with the optimal values obtained from the proposed scheme over the fixed time and power splitting factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

NOMA:

Non-orthogonal multiple access

SWIPT:

Simultaneous wireless information and power transfer

AF:

Amplify-and-forward

CTSPS:

Combined time switching and power splitting

DF:

Decode-and-forward

SIC:

Successive interference cancellation

EH:

Energy harvesting

DE:

Differential-evolution

RF:

Radio frequency

SNR:

Signal-to-noise ratio

AWGN:

Additive-white-Gaussian-noise

PS:

Power-splitting

TS:

Time-switching

References

  1. 1.

    Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Nonorthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.

    Article  Google Scholar 

  2. 2.

    Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195.

    Article  Google Scholar 

  3. 3.

    Xiao, Y., et al. (2018). Forwarding strategy selection in dual-hop NOMA relaying systems. IEEE Communications Letters, 22(8), 1644–1647.

    Article  Google Scholar 

  4. 4.

    Gurrala, K. K., & Das, S. (2016). Maximized channel capacity based power allocation technique for multi relay hybrid decode-amplify-forward cooperative network. Wireless Personal Communications, 87, 663–678. https://doi.org/10.1007/s11277-015-2622-9.

    Article  Google Scholar 

  5. 5.

    Wei, Z., Yuan, J., Ng, D. W. K., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Communications, 14(4), 17–26.

    Google Scholar 

  6. 6.

    Zhang, L., Liu, J., Xiao, M., Wu, G., Liang, Y.-C., & Li, S. (2017). Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE Journal on Selected Areas in Communications, 35(10), 2398–2412.

    Article  Google Scholar 

  7. 7.

    Wang, S., Cao, S., & Ruby, R. (2018). Optimal power allocation in NOMA-based two-path successive AF relay systems. EURASIP Journal on Wireless Communications and Networking, 2018, 273.

    Article  Google Scholar 

  8. 8.

    Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  9. 9.

    Huang, G., Zhang, Q., & Qin, J. (2015). Joint time switching and power allocation for multicarrier decode-and-forward relay networks with SWIPT. IEEE Signal Processing Letters, 22(12), 2284–2288.

    Article  Google Scholar 

  10. 10.

    Fang, F., Zhang, H., Cheng, J., & Leung, V. C. M. (2016). Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Transactions on Communications, 64(9), 3722–3732.

    Article  Google Scholar 

  11. 11.

    Nguyen, T.-L., & Do, D.-T. (2018). Power allocation schemes for wireless powered NOMA systems with imperfect CSI: An application in multiple antenna-based relay. International Journal of Communication Systems, 31(15), 1–17.

    Article  Google Scholar 

  12. 12.

    Hoang, T. M., Tan, N. T., Hoang, N. H., & Hiep, P. T. (2019). Performance analysis of decode-and-forward partial relay selection in NOMA systems with RF energy harvesting. Wireless Networks, 25(8), 4585–4595.

    Article  Google Scholar 

  13. 13.

    Do, D.-T., & Le, C.-B. (2018). Application of NOMA in wireless system with wireless power transfer scheme: Outage and ergodic capacity performance analysis. Sensors, 18(10), 3501.

    Article  Google Scholar 

  14. 14.

    Do, D.-T., & Le, C.-B. (2019). Impact of fixed power allocation in wireless energy harvesting NOMA network. International Journal of Communication Systems, 32(14), e4016.

    Article  Google Scholar 

  15. 15.

    Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2017). The impact of power allocation on cooperative non-orthogonal multiple access networks with SWIPT. IEEE Transactions on Wireless Communications, 16(7), 4332–4343.

    Article  Google Scholar 

  16. 16.

    Ye, Y., Li, Y., Wang, D., & Lu, G. (2017). Power splitting protocol design for the cooperative NOMA with SWIPT. In Proceedings of IEEE international conference on communications (pp. 1–5).

  17. 17.

    Zhang, Z., Qu, H., Zhao, J., Wang, W., & Wang, S. (2019). Fairness based power allocation optimization of cooperative noma with swipt network. In IEEE 4th international conference on signal and image processing (ICSIP) (pp. 555–560).

  18. 18.

    Tran, H. Q., Phan, C. V., & Vien, Q.-T. (2020). Power splitting versus time switching based cooperative relaying protocols for SWIPT in NOMA systems. Physical Communication, 41, 1–15.

    Article  Google Scholar 

  19. 19.

    Andrawes, A., Norden, R., & Abdullah, N. F. (2019). Energy-efficient downlink for non-orthogonal multiple access with SWIPT under constrained throughput. Energies, 13(1), 1–19.

    Article  Google Scholar 

  20. 20.

    Garcia, C. E., Tuan, P. V., Camana, M. R., & Koo, I. (2020). Optimized power allocation for a cooperative NOMA system with SWIPT and an energy-harvesting user. International Journal of Electronics, 107(10), 1704–1733.

    Article  Google Scholar 

  21. 21.

    Reshma, K., & Babu, A. V. (2020). Throughput analysis of energy harvesting enabled incremental relaying NOMA system. IEEE Communications Letters, 24(7), 1419–1423.

    Article  Google Scholar 

  22. 22.

    Everett, H. (1963). Generalized Lagrange multiplier method for solving problems of optimum allocation of resources. Operational Research, 11, 399–417.

    MathSciNet  Article  Google Scholar 

  23. 23.

    Qin, A. K., & Suganthan, P. N. (2005). Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of IEEE congress on evolutionary computation (pp. 1785–1791).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Narasimha Nayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Derivation to acquire the optimal power allocation coefficients \(a_{1} , \, a_{2}\) of NOMA users using Lagrange method.

Solution to get the power allocation fractions \(a_{1} , \, a_{2}\) with regard to D1 can be derived as follows:

The Lagrange function (J) can be formulated as

$$J = \gamma_{{eff_{x1} }} + \lambda P_{s} \, (a_{1} + a_{2} - 1) = 0$$
(26)

where

$$\gamma_{{eff_{x1} }} = \frac{{\gamma_{{sr_{1} }} \gamma_{{rd_{1} }} }}{{\gamma_{{sr_{1} }} + \gamma_{{rd_{1} }} }}$$
(27)
$$\gamma_{{sr_{1} }} = \frac{{P_{s} |h_{sr} |^{2} a_{1} }}{{P_{s} |h_{sr} |^{2} a_{2} + N_{0} }},\gamma_{rd1} = \frac{{\beta^{2} P_{s} |h_{sr} |^{2} |h_{rd} |^{2} a_{{_{1} }} }}{{\beta^{2} .P_{s} |h_{sr} |^{2} |h_{rd} |^{2} a_{2} + \beta^{2} |h_{rd} |^{2} N_{0} + N_{0} }}$$

By substituting \(\gamma_{{sr_{1} }}\) and \(\gamma {}_{rd1}\) in “(27)”, the effective SNR obtained as

$$\begin{aligned} \gamma_{{eff_{x1} }} & = \frac{{\beta^{2} P_{s}^{2} |h_{sr} |^{4} |h_{rd1} |^{2} a_{1}^{2} }}{{2.a_{2} a_{1} \beta^{2} P_{s}^{2} |h_{sr} |^{4} |h_{rd1} |^{2} + 2.a_{1} N_{0} \beta^{2} P_{s}^{2} |h_{sr} |^{2} |h_{rd1} |^{2} + a_{1} P_{s} |h_{sr} |^{2} N_{0} }} \\ \gamma_{{eff_{x1} }} & = \frac{1}{{\frac{{2.a_{2} }}{{a_{1} }} + \frac{{2.N_{0} }}{{P_{s} |h_{sr} |^{2} a_{1} }} + \frac{{N_{0}^{2} }}{{P_{s} P_{r} |h_{sr} |^{2} |h_{rd1} |^{2} a_{1} }} + \frac{{N_{0} }}{{P_{r} |h_{rd1} |^{2} a_{1} }}}} \\ \end{aligned}$$
(28)

where ‘λ’ is the Lagrangian multiplier.

By solving \(\frac{dJ}{{da_{1} }} = 0 \, and \, \frac{dJ}{{da_{2} }} = 0\)

$$\frac{\partial J}{{\partial a_{2} }} = 0$$
$$\Rightarrow a_{1}^{2} - (Z_{1} + 2 + \frac{1}{{2.P_{s} \lambda }}).a_{1} + 1 + Z_{1} + \frac{{Z_{1}^{2} }}{4} = 0$$

Finally, the power allocation factor for D1 can be expressed as

$$a_{1} = - (Z_{2} + \frac{1}{{P_{s} .\lambda }})$$
(29)

where \(Z_{1} = \frac{{2.N_{0} }}{{P_{s} |h_{sr} |^{2} }} + \frac{{N_{0}^{2} }}{{P_{s} P_{r} |h_{sr} |^{2} |h_{rd} |^{2} }} + \frac{{N_{0} }}{{P_{r} |h_{rd} |^{2} }}\); \(z_{2} = \frac{{2.N_{0} }}{{P_{s} |h_{sr} |^{2} }} + \frac{{N_{0} }}{{P_{r} |h_{rd} |^{2} }} + \frac{{N_{0}^{2} }}{{P_{s} P_{r} |h_{sr} |^{2} |h_{rd} |^{2} }}\).

Similarly, by solving \(\frac{\partial J}{{\partial a_{1} }} = 0\)

$$\Rightarrow a_{2} - (a_{1}^{2} + Z_{2}^{2} + 2.a_{1} .Z_{2} )P_{s} \lambda = 0$$

Finally, the power allocation factor for near user (D2) is given by

$$a_{2} = \frac{{ - (1 + \lambda P_{s} Z_{1} )}}{{2.P_{s} .\lambda }}$$
(30)

Optimal values of \(a_{1} , \, a_{2}\) can be formulated as

$$\left[ {a_{1} } \right]^{ + } = Max\left( {0,a_{1} } \right){\text {and }}\left[ {a_{2} } \right]^{ + } = Max\left( {0,a_{2} } \right)$$
(31)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nayak, V.N., Gurrala, K.K. A Novel Resource Allocation for SWIPT-NOMA Enabled AF Relay Based Cooperative Network. Wireless Pers Commun (2021). https://doi.org/10.1007/s11277-021-08150-7

Download citation

Keywords

  • NOMA
  • SWIPT
  • AF protocol
  • CTSPS
  • Power allocation
  • Lagrangian multiplier method
  • DE algorithm