Skip to main content
Log in

Design of an Electromagnetic Frequency Tunned Antenna for Mobile Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Current mobile communications technology relies heavily on efficient design of antennas, where the operational characteristics of the wireless communication systems are largely dependent on the directional specifications of the antenna. Consequently, the antennas that can be flexibly tuned to operate over a reasonable wide band of frequencies are of greatest interest for efficacious designs of mobile communication devices. In this research paper, a proposed model for an electromagnetically frequency tunable antenna that can cover a wide range of operating frequencies is presented. This design is based on altering the electromagnetic properties of the ferrite material that forms the antenna. It is shown that the resonance frequency of the proposed model can be adjusted by altering one of the main electromagnetic properties of the ferrite material of the antenna; that is its permeability. This can take place without introducing any modifications to the physical dimensions of the antenna. The proposed approach provides flexible operation of the antenna over a reasonable range of operating frequencies, which in turn results in an overall improvement in the performance of the mobile communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Institute of Electrical and Electronics Engineers, (2014) IEEE standard for definitions of terms for antennas. IEEE Std. pp. 145–2013.

  2. Kitra, M. I., Panagamuwa, C. J., McEvoy, P., Vardaxoglou, J. C., & James, J. R. (2007). Low SAR Ferrite Handset Antenna Design. IEEE Transactions on Antennas and Propagation, 56(11), 1155–1164.

    Article  Google Scholar 

  3. Fechine, P. B. A., & Denardin, J. C. (2010). Study of a microwave ferrite resonator antenna, based on a ferrimagnetic composite. IET Microwaves Antennas and Propagation. https://doi.org/10.1049/iet-map.2008.0301,January.

    Article  Google Scholar 

  4. Alves, T., Augustine, R., Grzeskowiak, M., Poussot, B., Delcroix, D., et al. (2009). BAN antenna design using ferrite polymer composite. In 3rd European conference on antennas and propagation, Berlin, Germany. pp. 965–968.

  5. Manikandan, V., Ali, M., Iulian, P., Srikanti, K., Mane, R., Juliano, D., et al. (2020). Effect of neodymium stimulation on the dielectric, magnetic and humidity sensing properties of iron oxide nanoparticles. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2020.123572.

    Article  Google Scholar 

  6. Chen, Z. N., Hirasawa, K., Leung, K. W., & Luk, K. M. (1999). A new inverted F anenna with a ring dirlectric resonator. IEEE Transactions on Vehicular Technology, 48, 1029–1032.

    Article  Google Scholar 

  7. Komulainen, M., Berg, M., Jantunen, H., Salonen, E. T., & Free, C. (2008). A frequency tuning method for a planar inverted-F antenna. IEEE Transactions on Antennas and Propagation, 56(4), 944–950.

    Article  Google Scholar 

  8. Eduardo, A., Silva, M. A. S., Mauricio, S. P., Antonio, S., Igor, V., Fechine, P. (2020). Effect of Bi2O3-B2O3 as a sintering aid in microstructure and dielectric properties of Fe2Mo3O12 electroceramic. DOI: https://doi.org/10.21203/rs.3.rs-45431/v1.

  9. Khan, N. (2014). Design of planar F-antenna. International Journal of Advanced Technology in Engineering and Science, 2(05), 20–31.

    Google Scholar 

  10. Razali, A. R., & Bialkowski, M. E. (2012). Dual-band slim inverted F-antenna with enhanced operational bandwidth. Microwave and Optical Technology Letters, 54(3), 684–689.

    Article  Google Scholar 

  11. Razali, A. R., & Bialkowski, M. E. (2009). Coplanar inverted-F antenna with open-end ground slots for multi-band operation. IEEE Antennas Wireless Propagation Letters, 8, 1029–1032.

    Article  Google Scholar 

  12. Byndas, A., Hossa, R., Bialkowski, M. E., & Kabacik, P. (2007). Investigations into operation of single and multi-layer configurations of planar inverted-F antenna. IEEE Antennas Propagation Magazine, 49, 22–33.

    Article  Google Scholar 

  13. Saini, S., Singh, S., Kumar, N. (2015). A review of various planar inverted F- Antenna (PIFA) structures for wireless applications. In international conference on electronic design innovations and technologies (EDIT-2015), At Chandigarh.

  14. Al-Ka’bi, A. (2020). Effect of polarized signals on the performance of adaptive antenna arrays. Archives of Electrical Engineering, 69(4), 857–872. https://doi.org/10.24425/aee.2020.134635.

    Article  Google Scholar 

  15. Paiva, D. V. M., Silva, M. A. S., de Oliveira, M., Alexandre, R., Fechine, L. M. U. D., Sergio, S., & Fechine, P. (2018). Magneto-dielectric composite based on Y3Fe5O12 – CaTiO3 for radio frequency and microwave applications. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2018.12.366.

    Article  Google Scholar 

  16. Al-Ka’bi, A. (2020). (2020) Proposed model for frequency tuning of ferrite-based inverted F-Antenna. Telecommunications and Radio Engineering, 79(3), 223–230. https://doi.org/10.1615/TelecomRadEng.v79.i3.40.

    Article  Google Scholar 

  17. Kaabi, A.H.A. (2018). PIFA antenna design for 4G wireless communications. In Proceedings of 2nd international conferences on information technology, information systems and electrical engineering, ICITISEE-2017. DOI: https://doi.org/10.1109/ICITISEE.2017.8285492

  18. Kelley, M., Huff, G., Lawrence, B., Koo, C., Li, S., Han, A., & McQuilken, H. (2013). Frequency reconfigurable patch antenna using liquid metal as switching mechanism. Electronics Letters, 49, 1370–1371.

    Article  Google Scholar 

  19. Zhou, Z., & Melde, K. L. (2007). Frequency agility of broadband antennas integrated with a reconfigurable RF impedance tuner. IEEE Antennas and Wireless Propagation Letters, 6, 56–59.

    Article  Google Scholar 

  20. Yun, J., & Choi, J. (2016). Low-Profile Planar Inverted-F Antenna for Ultrawideband Applications. J. Electr. Eng. Sci., 16, 235–240.

    Google Scholar 

  21. Al-Ka’bi, A., & Rady, M. (2021). A proposed Model for Frequency Tuned Antennas Used in Mobile Communication Systems. International Journal of Electrical and Computer Engineering (IJECE), 11(2), 1367–1374. https://doi.org/10.11591/ijece.v11i2.pp1367-1374.

    Article  Google Scholar 

  22. Soras, C., Karaboikis, M., & Makios, V. (2002). Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM band. IEEE Antennas and Propagation Magazine, 44(1), 37–44.

    Article  Google Scholar 

  23. El Halaoui, M., Ahyoud, S., (2014). Design and simulation of a planar inverted-F antenna for wireless applications 2.4 GHz. In 5th workshop on codes, cryptography and communication systems, at faculty of sciences, El Jadida - Morocco, pp. 27–28.

  24. Al-Ka’bi, A., Bialkowski, M., & Homer, J. (2008). “Performance of adaptive array antennas in mobile fading environment”, transactions of circuits, devices and systems. Journal of Institution of Engineering and Technology (IET), 2(1), 95–102. https://doi.org/10.1049/iet-cds:20070032.

    Article  Google Scholar 

  25. Boyle, K. R., Yuan, Y., & Ligthart, L. P. (2007). Analysis of mobile phone antenna impedance variations with user proximity. IEEE Transactions on Antennas and Propagation, 55, 364–372.

    Article  Google Scholar 

  26. Al-Ka’bi, A. H. (2020). Effect of polarization on the performance of adaptive antenna arrays. Journal of Communications, 15(9), 661–668. https://doi.org/10.12720/jcm.15.9.661-668.

    Article  Google Scholar 

  27. Pozar, D. M. (1992). Radiation and scattering characteristics of microstrip antennas on normally biased ferrite substrates. IEEE Transactions on AP, 40(9), 1084–1092.

    Article  Google Scholar 

  28. Sugimoto, M. (1999). The past, present, and future of ferrites. Journal of the American Ceramic Society, 82, 269–280.

    Article  Google Scholar 

  29. Pardavi-Horvath, M. (2000). Microwave applications of soft ferrites. Journal of Magnetism and Magnetic Materials, 215, 171–183.

    Article  Google Scholar 

  30. Suzuki, Y., Van Dover, R., Gyorgy, E., Phillips, J. M., Korenivski, V., Werder, D., et al. (1996). Structure and magnetic properties of epitaxial spinel ferrite thin films. Applied physics letters, 68, 714–716.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin H. Al Ka’bi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Ka’bi, A.H. Design of an Electromagnetic Frequency Tunned Antenna for Mobile Communications. Wireless Pers Commun 118, 2601–2610 (2021). https://doi.org/10.1007/s11277-021-08144-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08144-5

Keywords

Navigation