Skip to main content
Log in

Design and Analysis of (5, 10) Regular LDPC Encoder Using MRP Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An efficient compact encoding process with the pipelining design of Low Density Parity Check (LDPC) Encoder with a two stage, three stage and Maximal Rate Pipelining (MRP) structures are proposed in this work. Comparatively, LDPC encoding is more complex than decoding. The complexity mainly referred to the mathematical computation involved in the design of LDPC encoder. There are several methods used to design reduced parity check matrix, one of the methods involved is the Gauss Elimination method. Conventional and wave pipelining techniques are implemented to overcome the disadvantages of the area, latency, etc., The designed architectures are synthesized in SYNOPSYS tool and implemented in the XC3S-250E FPGA device. The overheads like power and area are efficiently reduced by wave pipelining and their efficiency can be proved by synthesis report. This showcases that the LDPC Encoders require less memory by using MRP structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdessalem, M. B., Zribi, A., Matsumoto, T., Dupraz, E., & Bouallege, E. (2020). LDPC-based joint source channel coding and decoding strategies relay cooperative communications. Physical Communication, 38, 100947.

    Article  Google Scholar 

  2. Gallager, R. G. (1962). Low density parity check codes. IRE Transactions on Information Theory, 8(1), 21–28.

    Article  MathSciNet  Google Scholar 

  3. Leiner, B. M. (2005). LDPC codes-a brief tutorial. April 8, 1–9.

  4. Mackey, D. J. C. (1999). Good error correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 45(2), 126–131.

    MathSciNet  Google Scholar 

  5. Davey, M. C., & MacKay, D. (1998). Low density parity check codes over GF(q). IEEE Communications Letters, 2(6), 165–167.

    Article  Google Scholar 

  6. Richardson, T. J., & Urbanke, R. L. (2003). The Renaissance of Gallager’s Low density parity check codes. IEEE Communications Magazine, 41(8), 126–131.

    Article  Google Scholar 

  7. Wang, Xiumin, Li, Jun, Chang, Hong, & He, Jinlong. (2020). Optimization design of polar LDPC-Concatenated scheme based on deep learning. Elsevier Journal of Computer and Electrical Engineering, 88(106636), 1–10.

    Google Scholar 

  8. Liang, T., Zhang, P., Liu, C., & Liu, J. (2018). Efficient encoding of quasi-cyclic low-density parity-check codes. In 2018 IEEE 3rd advanced information technology, electronic and automation control conference (IAEAC) (pp. 1189–1193). IEEE.

  9. Richardson, T. J., & Urbanke, R. L. (2001). Efficient encoding of low-density parity check codes. IEEE Transactions on Information Theory, 47, 638–656.

    Article  MathSciNet  Google Scholar 

  10. Ryan, W. Y. (2003). An introduction to LDPC codes. Albuquerque: University of New Mexico.

    Google Scholar 

  11. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 378–423.

    Article  MathSciNet  Google Scholar 

  12. Liwei, Mu, Liang, Chulong, Liu, Zhiyong, & Pan, Daru. (2016). Construction of regular rate-compatible LDPC convolutional codes. Wireless Communication, 13(8), 97–102.

    Google Scholar 

  13. Mostari, Latifa, & Ahmed, Abdelmalik Taleb. (2018). High performance short block binary regular LDPC codes. Elsevier Alexandria Engineering Journal, 57(4), 2633–2639.

    Article  Google Scholar 

  14. Kou, Y., Lin, S., & Fossorier, M. P. C. (2001). Low density parity check codes based on finite geometries: A rediscovery and new result. IEEE Transactions on Information Theory, 47(7), 2711–2736.

    Article  MathSciNet  Google Scholar 

  15. Genga, Y., Ogundile, O., Oyerinde, O., & Versfeld, J. (2017). A low complexity encoder construction for systematic quasi-cyclic LDPC codes. In 2017 IEEE AFRICON (pp. 167–170). IEEE.

  16. Chen, Dongying, Chen, Pingping, & Fang, Yi. (2017). Low complexity high-performance low-density parity check encoder design for china digital radio standard. IEEE Transaction, 5, 20880–20886.

    Google Scholar 

  17. Zhang, Tong, & Parhi, Keshab K. (2003). An FPGA implementation of (3, 6) regular low-density parity check decoder. EURASIP Journal on Applied Signal Processing, 6, 530–542.

    MATH  Google Scholar 

  18. Hernandez, O. J., & Blythe, N. F. (2008). An FPGA architecture for low density parity check codes. In IEEE SoutheastCon 2008 (pp. 186–191). IEEE.

  19. Sułek, W., & Kucharczyk, M. (2018). QC-LDPC codes with fast encoding for error control in NAND flash memories. In 2018 international conference on signals and electronic systems (ICSES) (pp. 37–42). IEEE.

  20. Boemo, E., & Meneses, Juan M. (1998). Some experiments about wave pipelining on FPGA. IEEE Transaction on VLSI Systems, 6(2), 232–237.

    Article  Google Scholar 

  21. Nandalal, V., & Anand Kumar, V. (2018). A comprehensive study on encoding techniques in low density parity check codes. Journal of Advance Research in Dynamic & Control Systems, 10(12), 455–458.

    Google Scholar 

  22. Nandalal, V., Anand Kumar, V., & Sumalatha, M. S. (2019). Wave pipelined area efficient LDPC encoder. International Journal of Engineering and Advanced Technology, 8(6), 50–53.

    Article  Google Scholar 

  23. Bocharova, Irina E., Kudryashov, Boris D., & Johannesson, Rolf. (2016). Searching for binary and non-binary block and convolutional LDPC codes. IEEE Transaction, 62(1), 1–20.

    MATH  Google Scholar 

  24. Hauck, O., & Huss, S. A. (1998). Asynchronous wave pipelines for high throughput datapaths. In 1998 IEEE international conference on electronics, circuits and systems. Surfing the waves of science and technology (Cat. No. 98EX196) (Vol. 1, pp. 283–286). IEEE.

  25. Anbuselvi, M., & Salivahanan, S. (2012). Area efficient and low power VLSI architecture of Min-Sum LDPC codes using wave pipelining. European Journal of Scientific Research, 24(3), 350–359.

    Google Scholar 

  26. Paramasivam, R., Adhinarayanan, V., & Gopalakrishnan, S. (2012). Design and implementation of automated wave-pipelined circuit using ASIC. In 2012 third international conference on intelligent systems modelling and simulation (pp. 351–355). IEEE.

  27. Parhi, K. K. (2007). VLSI digital signal processing systems: Design and implementation. Hoboken: Wiley.

    Google Scholar 

  28. Burleson, W. P., Ciesielski, M., Klass, F., & Liu, W. (1998). Wave-pipelining: a tutorial and research survey. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 6(3), 464–474.

    Article  Google Scholar 

  29. Jung, Y., & Kin, J. (2010). Memory efficient and high speed LDPC encoder. Electronic Letter, 45, 1035–1036.

    Article  Google Scholar 

  30. Sato, T., Chivapreecha, S., & Moungnoul, P. (2015). Fine-tuning of wave-pipelines on FPGAs developed by the RTL design. In 2015 12th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON) (pp. 1–6). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Nandalal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandalal, V., Anand Kumar, V. Design and Analysis of (5, 10) Regular LDPC Encoder Using MRP Technique. Wireless Pers Commun 118, 1295–1311 (2021). https://doi.org/10.1007/s11277-021-08075-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08075-1

Keywords

Navigation