Skip to main content

Advertisement

Log in

A Survey of Thermal Management in Cloud Data Centre: Techniques and Open Issues

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent years, there has been a great increase in usage of cloud data centers which leads the energy consumption growth by about 10% a year continuously. Further, due to the increase in temperature of cloud data center, the hardware failure rate increases and maintenance cost is also increased. Hotspots and an irregular temperature distribution are the major research issues. Therefore, accurate and reliable thermal management of the data center is a challenging task. In order to select appropriate and efficient thermal management approach, this survey presents a state of art review on the development in this field, discusses the classification of thermal management approaches and thermal mapping models. This review also reveals the thermal management and heat management strategies at data center level to make the data centre more energy efficient. Further, it discusses various thermal aware task scheduling strategies. In thermal management, computing equipments are scheduled with the objective to minimize the hotspot and cooling cost. Finally, evaluation metrics for measuring thermal efficiency and open research issues in this field are provided. Both researchers and academicians find this review useful since it presents the significant research in the field of thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qian, L., Luo, Z., Du, Y., & Guo, L. (2009). Cloud computing: An overview. In IEEE international conference on cloud computing (pp. 626–631). Springer, Berlin.

  2. Hauck, M., Huber, M., Klems, M., Kounev, S., Müller-Quade, J., Pretschner, A., et al. (2010). Challenges and opportunities of cloud computing. Karlsruhe Reports in Informatics. https://doi.org/10.5445/IR/1000020328.

    Article  Google Scholar 

  3. JoSEP, A. D., & KAtz, R., KonWinSKi, A., Gunho, L. E. E., PAttERSon, D., & RABKin, A. . (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.

    Google Scholar 

  4. Cloud Computing—The Business Perspective-02-09-02.pdf.

  5. World Energy Outlook, 2009 FACT SHEET. http://www.iea.org/weo/docs/weo2009/factsheetsWEO2009.pdf.

  6. Gartner report, financial times, 2007.

  7. Kaplan, J. Forrest, W., & Kindler, N. (2008). Revolutionizing data center energy efficiency. Technical Report (p. 15), McKinsey Company.

  8. Delforge, P. (2014) America’s data centers are wasting huge amounts of energy. Natural Resources Defense Council (NRDC). Available www.nrdc.org/energy/data-center-efficiency-assessment.as.

  9. Barroso, L. A., & Hölzle, U. (2007). The case for energy-proportional computing. Computer, 40(12), 33–37.

    Google Scholar 

  10. Liu, J., Zhao, F., Liu, X., & He, W. (2009). Challenges towards elastic power management in internet data centers. In 2009 29th ieee international conference on distributed computing systems workshops (pp. 65–72). IEEE.

  11. Moore, J. D., Chase, J. S., Ranganathan, P., & Sharma, R. K. (2005). Making scheduling “cool”: temperature-aware workload placement in data centers. In USENIX annual technical conference, general track (pp. 61–75).

  12. Donald, J., & Martonosi, M. (2006). Techniques for multicore thermal management: Classification and new exploration. ACM SIGARCH Computer Architecture News, 34(2), 78–88.

    Google Scholar 

  13. Wang, L., Khan, S. U., & Dayal, J. (2012). Thermal aware workload placement with task-temperature profiles in a data center. The Journal of Supercomputing, 61(3), 780–803.

    Google Scholar 

  14. Kong, J., Chung, S. W., & Skadron, K. (2012). Recent thermal management techniques for microprocessors. ACM Computing Surveys (CSUR), 44(3), 1–42.

    Google Scholar 

  15. Sharma, Y., Javadi, B., Si, W., & Sun, D. (2016). Reliability and energy efficiency in cloud computing systems: Survey and taxonomy. Journal of Network and Computer Applications, 74, 66–85.

    Google Scholar 

  16. Lee, E. K., Kulkarni, I., Pompili, D., & Parashar, M. (2012). Proactive thermal management in green datacenters. The Journal of Supercomputing, 60(2), 165–195.

    Google Scholar 

  17. Sheikh, H. F., Ahmad, I., Wang, Z., & Ranka, S. (2012). An overview and classification of thermal-aware scheduling techniques for multi-core processing systems. Sustainable Computing: Informatics and Systems, 2(3), 151–169.

    Google Scholar 

  18. Arghode, V. K., Kang, T., Joshi, Y., Phelps, W., & Michaels, M. (2017). Measurement of air flow rate through perforated floor tiles in a raised floor data center. Journal of Electronic Packaging, 139(1), 011007-1-011007–8.

    Google Scholar 

  19. Masdari, M., Nabavi, S. S., & Ahmadi, V. (2016). An overview of virtual machine placement schemes in cloud computing. Journal of Network and Computer Applications, 66, 106–127.

    Google Scholar 

  20. Singh, A. K., Shafique, M., Kumar, A., & Henkel, J. (2013). Mapping on multi/many-core systems: Survey of current and emerging trends. In 2013 50th ACM/EDAC/IEEE design automation conference (DAC) (pp. 1–10). IEEE.

  21. Lee, E. K., Viswanathan, H., & Pompili, D. (2015). Proactive thermal-aware resource management in virtualized HPC cloud datacenters. IEEE Transactions on Cloud Computing, 5(2), 234–248.

    Google Scholar 

  22. Bobroff, N., Kochut, A., & Beaty, K. (2007). Dynamic placement of virtual machines for managing SLA violations. In 2007 10th IFIP/IEEE international symposium on integrated network management (pp. 119–128). IEEE.

  23. Beloglazov, A., & Buyya, R. (2010). Energy efficient resource management in virtualized cloud data centers. In 2010 10th IEEE/ACM international conference on cluster, cloud and grid computing (pp. 826–831). IEEE.

  24. Beloglazov, A., & Buyya, R. (2012). Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints. IEEE Transactions on Parallel and Distributed Systems, 24(7), 1366–1379.

    Google Scholar 

  25. Beloglazov, A., & Buyya, R. (2010). Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. MGC @ Middleware, 4, 1890799–1890803.

    Google Scholar 

  26. Song, W., Xiao, Z., Chen, Q., & Luo, H. (2013). Adaptive resource provisioning for the cloud using online bin packing. IEEE Transactions on Computers, 63(11), 2647–2660.

    MathSciNet  MATH  Google Scholar 

  27. Song, Y., Sun, Y., Wang, H., & Song, X. (2007). An adaptive resource flowing scheme amongst VMs in a VM-based utility computing. In 7th IEEE international conference on computer and information technology (CIT 2007) (pp. 1053–1058). IEEE.

  28. Rodero, I., Viswanathan, H., Lee, E. K., Gamell, M., Pompili, D., & Parashar, M. (2012). Energy-efficient thermal-aware autonomic management of virtualized HPC cloud infrastructure. Journal of Grid Computing, 10(3), 447–473.

    Google Scholar 

  29. Tang, Q., Gupta, S. K., & Varsamopoulos, G. (2007). Thermal-aware task scheduling for data centers through minimizing heat recirculation. In 2007 ieee international conference on cluster computing (pp. 129–138). IEEE.

  30. Huang, W., Allen-Ware, M., Carter, J. B., Elnozahy, E., Hamann, H., Keller, T., et al. (2011). TAPO: Thermal-aware power optimization techniques for servers and data centers. In 2011 International green computing conference and workshops (pp. 1–8). IEEE.

  31. Zhu, H., Wang, J., Song, M., & Fang, Q. (2015). Thermal-aware load provisioning for server clusters by using model predictive control. In 2015 ieee conference on control applications (CCA) (pp. 336–340). IEEE.

  32. Tang, Q., Mukherjee, T., Gupta, S. K., & Cayton, P. (2006). Sensor-based fast thermal evaluation model for energy efficient high-performance datacenters. In 2006 Fourth international conference on intelligent sensing and information processing (pp. 203–208). IEEE.

  33. Bash, C., & Forman, G. (2007). Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In USENIX annual technical conference (vol. 138, p. 140).

  34. Sun, G., Liao, D., Anand, V., Zhao, D., & Yu, H. (2016). A new technique for efficient live migration of multiple virtual machines. Future Generation Computer Systems, 55, 74–86.

    Google Scholar 

  35. Sarker, T. K., & Tang, M. (2013). Performance-driven live migration of multiple virtual machines in datacenters. In 2013 IEEE international conference on granular computing (GrC) (pp. 253–258). IEEE.

  36. Liu, H., Jin, H., Xu, C. Z., & Liao, X. (2013). Performance and energy modeling for live migration of virtual machines. Cluster Computing, 16(2), 249–264.

    Google Scholar 

  37. Goudarzi, H., Ghasemazar, M., & Pedram, M. (2012). SLA-based optimization of power and migration cost in cloud computing. In 2012 12th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGRID 2012) (pp. 172–179). IEEE.

  38. Callegati, F., & Cerroni, W. (2013). Live migration of virtualized edge networks: Analytical modeling and performance evaluation. In 2013 IEEE SDN for future networks and services (SDN4FNS) (pp. 1–6). IEEE.

  39. Zhang, W., Lam, K. T., & Wang, C. L. (2014). Adaptive live VM migration over a wan: Modeling and implementation. In 2014 IEEE 7th international conference on cloud computing (pp. 368–375). IEEE.

  40. Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., et al. (2005). Live migration of virtual machines. In Proceedings of the 2nd conference on symposium on networked systems design and implementation (vol. 2, pp. 273–286).

  41. Jin, H., Deng, L., Wu, S., Shi, X., & Pan, X. (2009). Live virtual machine migration with adaptive, memory compression. In 2009 ieee international conference on cluster computing and workshops (pp. 1–10). IEEE.

  42. Rao, L., Liu, X., Xie, L., & Liu, W. (2010). Minimizing electricity cost: optimization of distributed internet data centers in a multi-electricity-market environment. In 2010 Proceedings IEEE INFOCOM (pp. 1–9). IEEE.

  43. Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., & Maggs, B. (2009). Cutting the electric bill for internet-scale systems. In Proceedings of the ACM SIGCOMM 2009 conference on data communication (pp. 123–134).

  44. Fang, Q., Wang, J., Gong, Q., & Song, M. (2017). Thermal-aware energy management of an HPC data center via two-time-scale control. IEEE Transactions on Industrial Informatics, 13(5), 2260–2269.

    Google Scholar 

  45. Ranganathan, P., Leech, P., Irwin, D., & Chase, J. (2006). Ensemble-level power management for dense blade servers. ACM SIGARCH Computer Architecture News, 34(2), 66–77.

    Google Scholar 

  46. Von Laszewski, G., Wang, L., Younge, A. J., & He, X. (2009). Power-aware scheduling of virtual machines in DVFS-enabled clusters. In 2009 IEEE international conference on cluster computing and workshops (pp. 1–10). IEEE.

  47. Meisner, Q. D. D., Bhattacharjee, A., Wenisch, T. F., & Bianchini, R. (2012). MultiScale: memory system DVFS with multiple memory controllers.

  48. Lee, S., & Kim, J. (2010). Using dynamic voltage scaling for energy-efficient flash-based storage devices. In 2010 international SoC design conference (pp. 63–66). IEEE.

  49. Xia, H., & Zhang, Y. (2013). A dynamic temperature controlling method for processors in constrained sealed spaces. Journal of Computers, 8(12), 3066–3072.

    Google Scholar 

  50. Steinder, M., Whalley, I., Carrera, D., Gaweda, I., & Chess, D. (2007). Server virtualization in autonomic management of heterogeneous workloads. In 2007 10th IFIP/IEEE international symposium on integrated network management (pp. 139–148). IEEE.

  51. Tang, Q., Gupta, S. K. S., & Varsamopoulos, G. (2008). Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: A cyber-physical approach. IEEE Transactions on Parallel and Distributed Systems, 19(11), 1458–1472.

    Google Scholar 

  52. Mukherjee, T., Banerjee, A., Varsamopoulos, G., Gupta, S. K., & Rungta, S. (2009). Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers. Computer Networks, 53(17), 2888–2904.

    MATH  Google Scholar 

  53. Choi, J., Kim, Y., Sivasubramaniam, A., Srebric, J., Wang, Q., & Lee, J. (2008). A CFD-based tool for studying temperature in rack-mounted servers. IEEE Transactions on Computers, 57(8), 1129–1142.

    MathSciNet  MATH  Google Scholar 

  54. Moore, J., Chase, J. S., & Ranganathan, P. (2006). Weatherman: Automated, online and predictive thermal mapping and management for data centers. In 2006 IEEE international conference on autonomic computing (pp. 155–164). IEEE.

  55. Zong, Z., Manzanares, A., Ruan, X., & Qin, X. (2010). EAD and PEBD: Two energy-aware duplication scheduling algorithms for parallel tasks on homogeneous clusters. IEEE Transactions on Computers, 60(3), 360–374.

    MathSciNet  MATH  Google Scholar 

  56. Garg, R., & Singh, A. K. (2016). Energy-aware workflow scheduling in grid under QoS constraints. Arabian Journal for Science and Engineering, 41(2), 495–511.

    Google Scholar 

  57. Wu, C. M., Chang, R. S., & Chan, H. Y. (2014). A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters. Future Generation Computer Systems, 37, 141–147.

    Google Scholar 

  58. Garg, S. K., Yeo, C. S., Anandasivam, A., & Buyya, R. (2011). Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers. Journal of Parallel and Distributed Computing, 71(6), 732–749.

    MATH  Google Scholar 

  59. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 28(5), 755–768.

    Google Scholar 

  60. Lee, Y. C., & Zomaya, A. Y. (2012). Energy efficient utilization of resources in cloud computing systems. The Journal of Supercomputing, 60(2), 268–280.

    Google Scholar 

  61. Ma, K., Li, X., Chen, W., Zhang, C., & Wang, X. (2012). Greengpu: A holistic approach to energy efficiency in GPU–CPU heterogeneous architectures. In 2012 41st international conference on parallel processing (pp. 48–57). IEEE.

  62. Sharkh, M. A., & Shami, A. (2017). An evergreen cloud: Optimizing energy efficiency in heterogeneous cloud computing architectures. Vehicular Communications, 9, 199–210.

    Google Scholar 

  63. Ding, Y., Qin, X., Liu, L., & Wang, T. (2015). Energy efficient scheduling of virtual machines in cloud with deadline constraint. Future Generation Computer Systems, 50, 62–74.

    Google Scholar 

  64. Goh, L. K., Veeravalli, B., & Viswanathan, S. (2008). Design of fast and efficient energy-aware gradient-based scheduling algorithms heterogeneous embedded multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems, 20(1), 1–12.

    Google Scholar 

  65. Garg, R., & Mittal, M. (2019). Reliability and energy efficient workflow scheduling in cloud environment. Cluster Computing, 22(4), 1283–1297.

    Google Scholar 

  66. Maurya, A. K., Modi, K., Kumar, V., Naik, N. S., & Tripathi, A. K. (2020). Energy-aware scheduling using slack reclamation for cluster systems. Cluster Computing, 23(2), 911–923.

    Google Scholar 

  67. Mishra, A., & Khare, N. (2015). Analysis of DVFS techniques for improving the gpu energy efficiency. Open Journal of Energy Efficiency, 4(04), 77.

    Google Scholar 

  68. Mochocki, B., Hu, X. S., & Quan, G. (2005). Practical on-line DVS scheduling for fixed-priority real-time systems. In 11th IEEE real time and embedded technology and applications symposium (pp. 224–233). IEEE.

  69. Zhuo, J., & Chakrabarti, C. (2005). System-level energy-efficient dynamic task scheduling. In Proceedings of the 42nd annual design automation conference (pp. 628–631).

  70. Chen, J. J., Kuo, T. W., & Shih, C. S. (2005). 1 + ε approximation clock rate assignment for periodic real-time tasks on a voltage-scaling processor. In Proceedings of the 5th ACM international conference on embedded software (pp. 247–250).

  71. Xie, F., Martonosi, M., & Malik, S. (2005). Bounds on power savings using runtime dynamic voltage scaling: An exact algorithm and a linear-time heuristic approximation. In Proceedings of the 2005 international symposium on low power electronics and design (pp. 287–292).

  72. Zhong, X., & Xu, C. Z. (2008). System-wide energy minimization for real-time tasks: Lower bound and approximation. ACM Transactions on Embedded Computing Systems (TECS), 7(3), 1–24.

    Google Scholar 

  73. Qin, Y., Zeng, G., Kurachi, R., Li, Y., Matsubara, Y., & Takada, H. (2019). Energy-efficient intra-task dvfs scheduling using linear programming formulation. IEEE Access, 7, 30536–30547.

    Google Scholar 

  74. Yeo, I., Liu, C. C., & Kim, E. J. (2008). Predictive dynamic thermal management for multicore systems. In Proceedings of the 45th annual design automation conference (pp. 734–739).

  75. Dhiman, G., & Rosing, T. S. (2006). Dynamic power management using machine learning. In Proceedings of the 2006 IEEE/ACM international conference on computer-aided design (pp. 747–754).

  76. Guo, Z., Bhuiyan, A., Saifullah, A., Guan, N., & Xiong, H. (2017). Energy-efficient multi-core scheduling for real-time DAG tasks. In 29th Euromicro conference on real-time systems (ECRTS 2017).

  77. Varsamopoulos, G., Banerjee, A., & Gupta, S. K. (2009). Energy efficiency of thermal-aware job scheduling algorithms under various cooling models. In International conference on contemporary computing (pp. 568–580). Springer, Berlin.

  78. Bash, C. B., Patel, C. D., & Sharma, R. K. (2006). Dynamic thermal management of air cooled data centers. In Thermal and thermomechanical proceedings 10th intersociety conference on phenomena in electronics systems, 2006. ITHERM 2006 (p. 8). IEEE.

  79. Wang, L., Von Laszewski, G., Dayal, J., He, X., Younge, A. J., & Furlani, T. R. (2009). Towards thermal aware workload scheduling in a data center. In 2009 10th international symposium on pervasive systems, algorithms, and networks (pp. 116–122). IEEE.

  80. Wang, L., von Laszewski, G., Dayal, J., & Furlani, T. R. (2009). Thermal aware workload scheduling with backfilling for green data centers. In 2009 IEEE 28th international performance computing and communications conference (pp. 289–296). IEEE.

  81. Garg, R., & Rani, R. (2019). State-of-the-art energy-efficient thermal-aware scheduling in cloud. In Information and communication technology for competitive strategies (pp. 157–164). Springer, Singapore.

  82. Parolini, L., Sinopoli, B., Krogh, B. H., & Wang, Z. (2011). A cyber–physical systems approach to data center modeling and control for energy efficiency. Proceedings of the IEEE, 100(1), 254–268.

    Google Scholar 

  83. Ma, Y., Chantem, T., Dick, R. P., & Hu, X. S. (2017). Improving system-level lifetime reliability of multicore soft real-time systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(6), 1895–1905.

    Google Scholar 

  84. Abdi, A., & Zarandi, H. R. (2018). HYSTERY: A hybrid scheduling and mapping approach to optimize temperature, energy consumption and lifetime reliability of heterogeneous multiprocessor systems. The Journal of Supercomputing, 74(5), 2213–2238.

    Google Scholar 

  85. Huang, L., Yuan, F., & Xu, Q. (2009). Lifetime reliability-aware task allocation and scheduling for MPSoC platforms. In 2009 design, Automation and test in Europe conference and exhibition (pp. 51–56). IEEE.

  86. Oxley, M. A., Jonardi, E., Pasricha, S., Maciejewski, A. A., Siegel, H. J., Burns, P. J., & Koenig, G. A. (2018). Rate-based thermal, power, and co-location aware resource management for heterogeneous data centers. Journal of Parallel and Distributed Computing, 112, 126–139.

    Google Scholar 

  87. Stansberry, M. (2013). 2013 Data Center Industry Survey. Uptime Inst. Data Cent. Ind. Survey (pp. 1–28

  88. Li, S., Abdelzaher, T., & Yuan, M. (2011). Tapa: Temperature aware power allocation in data center with map-reduce. In 2011 international green computing conference and workshops (pp. 1–8). IEEE.

  89. Merkel, A., Bellosa, F., & Weissel, A. (2005). Event-driven thermal management in SMP systems. In Second workshop on temperature-aware computer systems (TACS’05).

  90. Kumar, A., Shang, L., Peh, L. S., & Jha, N. K. (2006). HybDTM: A coordinated hardware–software approach for dynamic thermal management. In 2006 43rd ACM/IEEE design automation conference (pp. 548–553). IEEE.

  91. Naveh, A., Rotem, E., Mendelson, A., Gochman, S., Chabukswar, R., Krishnan, K., & Kumar, A. (2006). Power and thermal management in the intel core duo processor. Intel Technology Journal, 10(2), 109.

    Google Scholar 

  92. Coskun, A. K., Rosing, T. S., & Gross, K. C. (2008). Temperature management in multiprocessor SoCs using online learning. In 2008 45th ACM/IEEE design automation conference (pp. 890–893). IEEE.

  93. Taneja, S., Zhou, Y., Alghamdi, M. I., & Qin, X. (2017). Thermal-aware job scheduling of mapreduce applications on high performance clusters. In 2017 46th International conference on parallel processing workshops (ICPPW) (pp. 261–270). IEEE.

  94. Liu, H., Liu, B., Yang, L. T., Lin, M., Deng, Y., Bilal, K., & Khan, S. U. (2017). Thermal-aware and DVFS-enabled big data task scheduling for data centers. IEEE Transactions on Big Data, 4(2), 177–190.

    Google Scholar 

  95. Zhou, J., & Wei, T. (2015). Stochastic thermal-aware real-time task scheduling with considerations of soft errors. Journal of Systems and Software, 102, 123–133.

    Google Scholar 

  96. Cao, K., Zhou, J., Yin, M., Wei, T., & Chen, M. (2016). Static thermal-aware task assignment and scheduling for makespan minimization in heterogeneous real-time MPSoCs. In 2016 International symposium on system and software reliability (ISSSR) (pp. 111–118). IEEE.

  97. Marcel, A., Cristian, P., Eugen, P., Claudia, P., Cioara, T., Anghel, I., & Ioan, S. (2016). Thermal aware workload consolidation in cloud data centers. In 2016 IEEE 12th international conference on intelligent computer communication and processing (ICCP) (pp. 377–384). IEEE.

  98. Al-Qawasmeh, A. M., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2013). Power and thermal-aware workload allocation in heterogeneous data centers. IEEE Transactions on Computers, 64(2), 477–491.

    MathSciNet  MATH  Google Scholar 

  99. Cupertino, L., Da Costa, G., Oleksiak, A., Pia, W., Pierson, J. M., Salom, J., et al. (2015). Energy-efficient, thermal-aware modeling and simulation of data centers: the CoolEmAll approach and evaluation results. Ad Hoc Networks, 25, 535–553.

    Google Scholar 

  100. Polverini, M., Cianfrani, A., Ren, S., & Vasilakos, A. V. (2013). Thermal-aware scheduling of batch jobs in geographically distributed data centers. IEEE Transactions on Cloud Computing, 2(1), 71–84.

    Google Scholar 

  101. Shamalizadeh, H., Almeida, L., Wan, S., Amaral, P., Fu, S., & Prabh, S. (2013). Optimized thermal-aware workload distribution considering allocation constraints in data centers. In 2013 IEEE international conference on green computing and communications and ieee internet of things and IEEE cyber, physical and social computing (pp. 208–214). IEEE.

  102. Zhou, J., Cao, K., Cong, P., Wei, T., Chen, M., Zhang, G., et al. (2017). Reliability and temperature constrained task scheduling for makespan minimization on heterogeneous multi-core platforms. Journal of Systems and Software, 133, 1–16.

    Google Scholar 

  103. Zhou, J., Wei, T., Chen, M., Yan, J., Hu, X. S., & Ma, Y. (2015). Thermal-aware task scheduling for energy minimization in heterogeneous real-time MPSoC systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(8), 1269–1282.

    Google Scholar 

  104. Tyagi, S. K. S., Jain, D. K., Fernandes, S. L., & Muhuri, P. K. (2017). Thermal-aware power-efficient deadline based task allocation in multi-core processor. Journal of Computational Science, 19, 112–120.

    Google Scholar 

  105. Rani, R., & Garg, R. (2020). Power and temperature-aware workflow scheduling considering deadline constraint in cloud. Arabian Journal for Science and Engineering, 45, 10775–10791.

    Google Scholar 

  106. Fu, L., Wan, J., Liu, T., Gui, X., & Zhang, R. (2017). A temperature-aware resource management algorithm for holistic energy minimization in data centers. In 2017 2nd workshop on recent trends in telecommunications research (RTTR) (pp. 1–5). IEEE.

  107. Akbari, A., Khonsari, A., & Ghoreyshi, S. M. (2020). Thermal-aware virtual machine allocation for heterogeneous cloud data centers. Energies, 13(11), 2880.

    Google Scholar 

  108. Salami, B., Baharani, M., & Noori, H. (2014). Proactive task migration with a self-adjusting migration threshold for dynamic thermal management of multi-core processors. The Journal of Supercomputing, 68(3), 1068–1087.

    Google Scholar 

  109. Herrlin, M. K. (2008). Airflow and cooling performance of data centers: Two performance metrics. ASHRAE Transactions, 114(2), 182–187.

    Google Scholar 

  110. Sharma, R., Bash, C., & Patel, C. (2002). Dimensionless parameters for evaluation of thermal design and performance of large-scale data centers. In 8th AIAA/ASME Joint thermophysics and heat transfer conference (p. 3091)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Rani.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, R., Garg, R. A Survey of Thermal Management in Cloud Data Centre: Techniques and Open Issues. Wireless Pers Commun 118, 679–713 (2021). https://doi.org/10.1007/s11277-020-08039-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-08039-x

Keywords

Navigation