Skip to main content
Log in

A Hardware Implementation for a New Post-correlation Anti-jamming Method

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper describes the design and development of field programmable gate arrays based anti-jamming hardware. The key function of the system involves a new post-correlation filtering system to provide an anti-jamming feature in GPS receivers. The proper filter is applied to the values of the cross-ambiguity function in the search space, which decreases interference signal contribution without any need for prior knowledge of its specific characteristics. The structure is implemented and evaluated on the Xilinx ZedBoard which uses an XC7Z020 chip as the main processing unit. The design of the proposed filter structure is fully pipelined. It can be easily integrated with the acquisition system. By using this method, the receiver is capable of acquiring four satellites and successfully positioning in the presence of continuous wave interference with JSR up to 50 dB. The resource usage of the design is independent of the correlation output size. This can reduce the number of resources used and the computational burden greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Trinkle, M., & Gray, D. (2001). GPS interference mitigation; overview and experimental results. In Proceedings of the 5th international symposium on satellite navigation technology and applications, Canberra, Australia (pp. 1–14), July 24–27.

  2. Kaplan, E. D., & Hegarty, C. J. (2005). Understanding GPS: Principles and applications (2nd ed.). Norwood, MA: Artech House Publishers.

    Google Scholar 

  3. Borio, D. (2010). GNSS acquisition in the presence of continuous wave interference. IEEE Transactions on Aerospace and Electronic Systems, 46(1), 47–60.

    Article  Google Scholar 

  4. Dinan, E. H., & Jabbari, B. (1998). Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Communications Magazine, 36(9), 48–54.

    Article  Google Scholar 

  5. Deshpande, S., & Cannon, M. E. (2004). Interference effects on the GPS signal acquisition. In Proceedings ION GPS/GNSS 2003, national technical meeting of the Institute of Navigation, San Diego, CA, USA (pp. 1026–1036), January 26–28.

  6. Abdizadeh, M., Curran, J. T., & Lachapelle, G. (2014). New decision variables for GNSS acquisition in the presence of CW interference. IEEE Transactions on Aerospace and Electronic Systems, 50(4), 2794–2806.

    Article  Google Scholar 

  7. Balaei, A. T., Dempster, A. G., & Presti, L. L. (2009). Characterization of the effects of CW and pulse CW interference on the GPS signal quality. IEEE Transactions on Aerospace and Electronic Systems, 45(4), 1418–1431.

    Article  Google Scholar 

  8. Balaei, A. T., Barnes, J., & Dempster, A. G. (2005). Characterization of interference effects on GPS signal carrier phase error. In Proceedings of SSC 2005 spatial intelligence, innovation and praxis, Melbourne, Spatial Science Institute, September.

  9. Di Carlo, S., Gambardella, G., Indaco, M., Rolfo, D., Tiotto, G., & Prinetto, P. (2011). An area-efficient 2-D convolution implementation on FPGA for space applications. In 2011 IEEE 6th international design and test workshop (IDT) (pp. 88–92). IEEE.

  10. Quinn, M. J. (1994). Parallel computing theory and practice. New York City: McGraw-Hill Inc.

    Google Scholar 

  11. Haralick, R. M., & Shapiro, L. G. (1992). Computer and robot vision (Vol. 1, pp. 28–48). Boston: Addison-Wesley Longman Publishing Co. Inc.

    Google Scholar 

  12. Bosi, B., Bois, G., & Savaria, Y. (1999). Reconfigurable pipelined 2-D convolvers for fast digital signal processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7(3), 299–308.

    Article  Google Scholar 

  13. Zhang, H., Xia, M., & Hu, G. (2007). A multiwindow partial buffering scheme for FPGA-based 2-D convolvers. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(2), 200–204.

    Article  Google Scholar 

  14. Cardells-Tormo, F., & Molinet, P. L. (2005). Area-efficient 2-D shift-variant convolvers for FPGA-based digital image processing. In IEEE workshop on signal processing systems design and implementation (pp. 209–213). IEEE.

  15. Zhang, M. Z., & Asari, V. K. (2006). A fully pipelined multiplierless architecture for 2D convolution with quadrant symmetric kernels. In APCCAS 2006–2006 IEEE Asia pacific conference on circuits and systems (pp. 1559–1562). IEEE.

  16. Perri, S., Lanuzza, M., Corsonello, P., & Cocorullo, G. (2005). A high-performance fully reconfigurable FPGA-based 2D convolution processor. Microprocessors and Microsystems, 29(8–9), 381–391.

    Article  Google Scholar 

  17. Torres-Huitzil, C., & Arias-Estrada, M. (2004). Real-time image processing with a compact FPGA-based systolic architecture. Real-Time Imaging, 10(3), 177–187.

    Article  Google Scholar 

  18. Ngo, H. T., & Asari, V. K. (2009). Design of a logarithmic domain 2-D convolver for low power video processing applications. In 2009 Sixth international conference on information technology: New generations (pp. 1280–1285). IEEE.

  19. Grimshaw, A. S., Strayer, W. T., & Narayan, P. (1993). Dynamic, object-oriented parallel processing. IEEE Parallel and Distributed Technology: Systems and Applications, 1(2), 33–47.

    Article  Google Scholar 

  20. Karpovich, J. F., Judd, M., Strayer, W. T., & Grimshaw, A. S. (1993). A parallel object-oriented framework for stencil algorithms. In Proceedings the 2nd international symposium on high performance distributed computing (pp. 34–41). IEEE.

  21. Sotiropoulou, C. L., Gkaitatzis, S., Annovi, A., Beretta, M., Giannetti, P., Kordas, K., et al. (2014). A multi-core FPGA-based 2D-clustering implementation for real-time image processing. IEEE Transactions on Nuclear Science, 61(6), 3599–3606.

    Article  Google Scholar 

  22. Yu, S., Clement, M., Snell, Q., & Morse, B. (1998). Parallel algorithms for image convolution. In Proceedings of the international conference on parallel and distributed techniques and applications, Las Vegas, Nevada.

  23. Gonzalez, R. C., & Woods, R. E. (2006). Digital image processing (3rd ed.). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  24. Xilinx Divider Generator v5.1 Core Product Guide, October 2016. Retrived July 10, 2020, from https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf.

  25. Xilinx Multiply Adder v3.0 Core Product Guide, November 2015. Retrived July 10, 2020, from https://www.xilinx.com/support/documentation/ip_documentation/xbip_multadd/v3_0/pg192-multadd.pdf.

  26. Panigrahy, D., Rakshit, M., & Sahu, P. K. (2016). FPGA implementation of heart rate monitoring system. Journal of Medical Systems, 40(3), 49.

    Article  Google Scholar 

  27. Hu, Y., & Ji, H. (2009). Research on image median filtering algorithm and its FPGA implementation. In 2009 WRI global congress on intelligent systems (Vol. 3, pp. 226–230). IEEE.

  28. Van Nee, D. J. R., & Coenen, A. J. R. M. (1991). New fast GPS code-acquisition technique using FFT. Electronics Letters, 27(2), 158–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mosavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghadadashfam, M., Ramezani, A. & Mosavi, M.R. A Hardware Implementation for a New Post-correlation Anti-jamming Method. Wireless Pers Commun 117, 2555–2574 (2021). https://doi.org/10.1007/s11277-020-07994-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07994-9

Keywords

Navigation