Skip to main content
Log in

Recent Advances in Ad-Hoc Social Networking: Key Techniques and Future Research Directions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Ad-hoc Social Networks are formed by groups of nodes, designating a similarity of interests. The network establishes a two-layer hierarchical structure that comprises communication within-group and joining with other groups. This paper presents survey and future directions in four areas of establishing ad-hoc social network using mobile ad-hoc social network (MANET) that includes architecture or implementation features, Profile Management of users, Similarity Metric, and Routing Protocols. The survey presents the need to provide social applications over MANET, optimizing profile matching algorithms of users, and context aware routing protocols. Future directions include multi-hop social network applications that can be useful for users even in airplane mode and notifying over MANET when a user of profile with similar interest is nearby.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, A. M., Xia, F., Asabere, N. Y., Liaqat, H. B., & Li, J. (2013). Social community-partition aware replica allocation in ad-hoc social networks. In IEEE international conference on green computing and communications and IEEE internet of Things and IEEE cyber, physical and social computing (pp 834–841). IEEE.

  2. Alrfaay, M., Lenando, H., & Chikha, H. B. (2019). Prophsoc: Probability-based social-based routing scheme in mobile social network (MSN). In 2019 International conference on computer and information sciences (ICCIS) (pp. 1–5). IEEE.

  3. Anderson, A., Huttenlocher, D., Kleinberg, J., & Leskovec, J. (2012). Effects of user similarity in social media. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 703–712). ACM.

  4. Aneja, N., & Gambhir, S. (2014). Geo-social profile matching algorithm for dynamic interests in ad-hoc social network. Social Networking, 3(5), 240–247.

    Article  Google Scholar 

  5. Aneja, N., & Gambhir, S. (2015). Geo-social semantic profile matching algorithm for dynamic interests in ad-hoc social network. In International conference on computational intelligence communication technology (ICCICT) (pp. 354–358). IEEE.

  6. Aneja, N., Gambhir, S. (2015b). Method and System for Ad-hoc Social Networking and Profile Matching. India Patent Application 3105/DEL/2015 (Filed Sept 29, 2015, Published Mar 31, 2017).

  7. Aneja, N., & Gambhir, S. (2016). Middleware architecture for ad-hoc social network. Research Journal of Applied Sciences, Engineering and Technology, 13(9), 690–695.

    Article  Google Scholar 

  8. Aneja, N., & Gambhir, S. (2017). Social profile aware AODV Protocol for ad-hoc social networks. Wireless Personal Communications, 97(3), 4161–4182.

    Article  Google Scholar 

  9. Aneja, N., & Gambhir, S. (2018). Profile-based ad hoc social networking using Wi-Fi direct on the top of android. Mobile Information Systems.

  10. Aneja, N., & Gambhir, S. (2019). Method and system for ad-hoc social networking and profile matching. US Patent 10,264,609.

  11. Arafat, M. Y., & Moh, S. (2019). Routing protocols for unmanned aerial vehicle networks: A survey. IEEE Access, 7, 99694–99720.

    Article  Google Scholar 

  12. Baker, C., Almodovar-faria, J., & Mcnair, J. (2020). Ad-hoc social network (AHSN) system, AHSN-enabled device, and methods of use. US Patent 10,694,362.

  13. Basta, N., ElNahas, A., Grossmann, H. P., & Abdennadher, S. (2019). A framework for social tie strength inference in vehicular social networks. In 2019 wireless days (WD) (pp. 1–8). IEEE.

  14. Bing, Q., Jiang, R., & Hong, F. (2019). Exploiting social network characteristics for efficient routing in ocean vessel ad hoc networks. In 2019 IEEE 38th international performance computing and communications conference (IPCCC) (pp. 1–8). IEEE.

  15. Borrego, C., Borrell, J., & Robles, S. (2019). Hey, influencer! message delivery to social central nodes in social opportunistic networks. Computer Communications, 137, 81–91.

    Article  Google Scholar 

  16. Bottazzi, D., Montanari, R., & Toninelli, A. (2007). Context-aware middleware for anytime, anywhere social networks. IEEE Intelligent Systems, 22(5), 23–32.

    Article  Google Scholar 

  17. Campbell, A., Eisenman, S., Fodor, K., Lane, N., Lu, H., Miluzzo, E., Musolesi, M., Peterson, R., & Zheng, X. (2008). Cenceme: Injecting sensing presence into social network applications using mobile phones (demo abstract). In Proceedings of nineth ACM international symposium on mobile ad hoc networking and computing (MobiHoc’08), Hong Kong.

  18. Caputo, A., Socievole, A., & Rango, F.D. (2015). CRAWDAD dataset unical/socialblueconn (v. 2015-02-08). Downloaded from http://crawdad.org/unical/socialblueconn/20150208.

  19. Chung, E., Joy, J., & Gerla, M. (2015). DiscoverFriends: Secure social network communication in mobile ad hoc networks. In International wireless communications and mobile computing conference (IWCMC) (pp. 7–12). IEEE.

  20. Funai, C., Tapparello, C., & Heinzelman, W. (2015). Supporting multi-hop device-to-device networks through wifi direct multi-group networking. arXiv preprint arXiv:1601.00028.

  21. Funai, C., Tapparello, C., & Heinzelman, W. (2017). Enabling multi-hop ad hoc networks through WiFi direct multi-group networking. In International conference on computing, networking and communications (ICNC) (pp. 491–497). IEEE.

  22. Gambhir, S., Aneja, N., & De Silva, L. C. (2017). Piecewise maximal similarity for ad-hoc social networks. Wireless Personal Communications, 97(3), 3519–3529.

    Article  Google Scholar 

  23. Gambhir, S., Aneja, N., & Mangla, S. (2015). Need of ad-hoc social network based on users’ dynamic interests. In International conference on soft computing techniques and implementations (ICSCTI) (pp. 52–56). IEEE.

  24. Gupta, R., Krishnamurthi, N., Wang, U.-T., Tamminedi, T., & Gerla, M. (2017). Routing in mobile ad-hoc networks using social tie strengths and mobility plans. In Wireless communications and networking conference (WCNC), 2017 IEEE (pp. 1–6). IEEE.

  25. Han, X., Wang, L., Crespi, N., Park, S., & Cuevas, Á. (2015). Alike people, alike interests? Inferring interest similarity in online social networks. Decision Support Systems, 69, 92–106.

    Article  Google Scholar 

  26. Hoang, L. V., & Ogawa, H. (2014). A platform for building ad hoc social networks based on Wi-Fi direct. In Global conference on consumer electronics (GCCE) (pp. 626–629). IEEE.

  27. Joy, J., Chung, E., Yuan, Z., Li, J., Zou, L., & Gerla, M. (2016). DiscoverFriends: Secure social network communication in mobile ad hoc networks. Wireless Communications and Mobile Computing, 16(11), 1401–1413.

    Article  Google Scholar 

  28. Kayastha, N., Niyato, D., Wang, P., & Hossain, E. (2011). Applications, architectures, and protocol design issues for mobile social networks: A survey. Proceedings of the IEEE, 99(12), 2130–2158.

    Article  Google Scholar 

  29. Khan, M. A., Cherif, W., Filali, F., & Hamila, R. (2017). Wi-fi direct research-current status and future perspectives. Journal of Network and Computer Applications, 93, 245–258.

    Article  Google Scholar 

  30. Kraus, N., Carmel, D., Keidar, I., & Orenbach, M. (2016). NearBucket-LSH: Efficient similarity search in P2P networks. In International conference on similarity search and applications (pp. 236–249). Springer.

  31. Lee, J., & Hong, C. S. (2011). A mechanism for building ad-hoc social network based on user’s interest. In Asia-Pacific network operations and management symposium (pp. 1–4). IEEE.

  32. Li, C., Liye, Z., Hengliang, T., & Youlong, L. (2019). Mobile user behavior based topology formation and optimization in ad hoc mobile cloud. Journal of Systems and Software, 148, 132–147.

    Article  Google Scholar 

  33. Li, H., Bok, K., & Yoo, J. (2013). Mobile P2P social network using location and profile. In Ubiquitous information technologies and applications (pp. 333–339). Springer.

  34. Li, H., Bok, K. S., & Yoo, J. S. (2014). P2P based social network over mobile ad-hoc networks. IEICE Transactions on Information and Systems, 97(3), 597–600.

    Article  Google Scholar 

  35. Li, J., & Khan, S. U. (2009). MobiSN: Semantics-based mobile ad hoc social network framework. In Global telecommunications conference (GLOBECOM) (pp. 1–6). IEEE.

  36. Liaqat, H. B., Ali, A., Qadir, J., Bashir, A. K., Bilal, M., & Majeed, F. (2019). Socially-aware congestion control in ad-hoc networks: Current status and the way forward. Future Generation Computer Systems, 97, 634–660.

    Article  Google Scholar 

  37. Liaqat, H. B., Xia, F., Ma, J., Yang, L. T., Ahmed, A. M., & Asabere, N. Y. (2015). Social-similarity-aware TCP with collision avoidance in ad hoc social networks. IEEE Systems Journal, 9(4), 1273–1284.

    Article  Google Scholar 

  38. Liaqat, H. B., Yang, Q., Ahmed, A. M., Xu, Z., Qiu, T., & Xia, F. (2014). A social popularity aware scheduling algorithm for ad-hoc social networks. In International joint conference on computer science and software engineering (JCSSE) (pp. 28–33). IEEE.

  39. Marinho, R. P., Menegato, U. B., & de Oliveira, R. A. R. (2015). Mobile devices routing using Wi-Fi direct technology. Advanced international conference on telecomunications (pp. 83–89).

  40. Mizzaro, S., Pavan, M., & Scagnetto, I. (2015). Content-based similarity of twitter users. In European conference on information retrieval (pp. 507–512). Springer.

  41. Oesch, S., & Schuchard, M. (2019). Nation scale mobile ad hoc network for normally isolated topologies. In 2019 international conference on internet of things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData) (pp. 156–163). IEEE.

  42. Palani, S., Kumar, S., & Madhuri, P. (2015). Influencing social networks for P2P substance-based file distribution in disjointed MANETs. International Journal of Computer Applications,. https://doi.org/10.5120/21669-4749.

    Article  Google Scholar 

  43. Rahim, A., Qiu, T., Ning, Z., Wang, J., Ullah, N., Tolba, A., et al. (2019). Social acquaintance based routing in vehicular social networks. Future Generation Computer Systems, 93, 751–760.

    Article  Google Scholar 

  44. Rahman, M. A., & Hossain, M. S. (2017). A location-based mobile crowdsensing framework supporting a massive ad hoc social network Environment. IEEE Communications Magazine, 55(3), 76–85.

    Article  Google Scholar 

  45. Ramos, T. M., Moura, B. R., Damasceno, M. B., Holanda, M., & Araujo, A. (2015). FrameGeoSocial mobile ad-hoc social network based on geolocation. In Iberian conference on information systems and technologies (CISTI) (pp. 1–5). IEEE.

  46. Robinson, Y. H., Krishnan, R. S., Julie, E. G., Kumar, R., Thong, P. H., et al. (2019). Neighbor knowledge-based rebroadcast algorithm for minimizing the routing overhead in mobile ad-hoc networks. Ad Hoc Networks, 93, 101896.

    Article  Google Scholar 

  47. Sanguankotchakorn, T., Shrestha, S., & Sugino, N. (2012). Effective ad hoc social networking on OLSR MANET using similarity of interest approach. In Internet and distributed computing systems (pp. 15–28).

  48. Sarigöl, E., Riva, O., & Alonso, G. (2010). A tuple space for social networking on mobile phones. In 2010 IEEE 26th international conference on data engineering (ICDE) (pp. 988–991). IEEE.

  49. Sarigöl, E., Riva, O., Stuedi, P., & Alonso, G. (2009). Enabling social networking in ad hoc networks of mobile phones. Proceedings of the VLDB Endowment, 2(2), 1634–1637.

    Article  Google Scholar 

  50. Scott, J. E. (2020). Streaming content using ad hoc networks of user devices. US Patent 10,686,854.

  51. Seada, K., & Perkins, C. (2006). Social networks: The killer app for wireless ad hoc networks? Nokia Research Centre, NRC-TR-2006-010.

  52. Sigholt, Ø., Tolay, B., & Jiangy, Y. (2019). Keeping connected when the mobile social network goes offline. In 2019 International conference on wireless and mobile computing, networking and communications (WiMob) (pp. 59–64). IEEE.

  53. Spertus, E., Sahami, M., & Buyukkokten, O. (2005). Evaluating similarity measures: A large-scale study in the orkut social network. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (pp. 678–684). ACM.

  54. Symeonidis, P., Ntempos, D., & Manolopoulos, Y. (2014). Location-based social networks. In Recommender systems for location-based social networks (pp. 35–48). Springer.

  55. Tchendji, M. T., Tchembé, M. X., & Kakeu, A. L. M. (2019). An ad-hoc social network generation approach. https://github.com/MartinezX21/SMGenerator.

  56. Tchendji, M. T., Tchembé, M. X., & Kakeu, A. L. M. (2020). An ad-hoc social network generation approach. arXiv preprint arXiv:2008.04618.

  57. Torrijos, S., Bellogín, A., & Sánchez, P. (2020). Discovering related users in location-based social networks. In Proceedings of the 28th ACM conference on user modeling, adaptation and personalization (pp. 353–357).

  58. Trieu, Q. L., & Pham, T. V. (2012). STARS: Ad-hoc peer-to-peer online social network. In International conference on computational collective intelligence (pp. 385–394). Springer.

  59. Wang, Y., Vasilakos, A. V., Jin, Q., & Ma, J. (2014). A Wi-Fi direct based P2P application prototype for mobile social networking in proximity (MSNP). In International conference on dependable, autonomic and secure computing (pp. 283–288). IEEE.

  60. Wang, Z., Liao, J., Cao, Q., Qi, H., & Wang, Z. (2015). Friendbook: A semantic-based friend recommendation system for social networks. IEEE Transactions on Mobile Computing, 14(3), 538–551.

    Article  Google Scholar 

  61. Xia, F., Liu, L., Li, J., Ma, J., & Vasilakos, A. V. (2015). Socially aware networking: A survey. IEEE Systems Journal, 9(3), 904–921.

    Article  Google Scholar 

  62. Yiu, M. L., Šaltenis, S., Tzoumas, K., et al. (2010). Efficient proximity detection among mobile users via self-tuning policies. Proceedings of the VLDB Endowment, 3(1–2), 985–996.

    Article  Google Scholar 

  63. Yu, F., Che, N., Li, Z., Li, K., & Jiang, S. (2017). Friend recommendation considering preference coverage in location-based social networks. In Pacific-Asia conference on knowledge discovery and data mining (pp. 91–105). Springer.

  64. Zhang, D., Zhang, D., Xiong, H., Hsu, C.-H., & Vasilakos, A. V. (2014). BASA: Building mobile ad-hoc social networks on top of android. IEEE Network, 28(1), 4–9.

    Article  Google Scholar 

  65. Zhang, L., Ding, X., Wan, Z., Gu, M., & Li, X.-Y. (2010). Wiface: A secure geosocial networking system using WiFi-based multi-hop manet. In Proceedings of the 1st ACM workshop on mobile cloud computing & services: social networks and beyond (p. 3). ACM.

  66. Zhang, L., Li, X.-Y., & Liu, Y. (2013). Message in a sealed bottle: Privacy preserving friending in social networks. In 2013 IEEE 33rd international conference on distributed computing systems (ICDCS) (pp. 327–336). IEEE.

  67. Zhang, R., Zhang, J., Zhang, Y., Sun, J., & Yan, G. (2013). Privacy-preserving profile matching for proximity-based mobile social networking. IEEE Journal on Selected Areas in Communications, 31(9), 656–668.

    Article  Google Scholar 

  68. Zhang, Y., Tang, J., Yang, Z., Pei, J., & Yu, P. S. (2015). Cosnet: Connecting heterogeneous social networks with local and global consistency. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1485–1494). ACM.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagender Aneja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aneja, N., Gambhir, S. Recent Advances in Ad-Hoc Social Networking: Key Techniques and Future Research Directions. Wireless Pers Commun 117, 1735–1753 (2021). https://doi.org/10.1007/s11277-020-07942-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07942-7

Keywords

Navigation