Multicarrier Systems Over Underwater Acoustic Channels: A Performance Evaluation

Abstract

The use of clean communication paths underwater can enable important applications not only for the human being. Predictions of water-observation systems (e.g., oxygen levels, climate recording, pollutant contents) and monitoring/imaging animal activity (e.g., fish, micro-organisms) could anticipate actions to preserve underwater life in case of natural disturbances. Thus, a well-designed underwater communication system goes beyond military and commercial applications, it is an agent to safeguard ocean and rivers lives. This work contributes to an underwater link design at evaluating the performance of two emerging waveforms techniques (OFDM and GFDM) and the classic FSK over an underwater acoustic channel. Large scale fading effects, including multipath fading, Doppler spread, and geometric issues are addressed. In addition to the well-known ability to combat multipath in electromagnetic channels, OFDM and GFDM are chosen due to their efficient use of bandwidth and higher data rate compared to the current underwater FSK modems. We analyze the performance of those techniques, as well as their similarities and differences in terms of the Bit Error Rate and Bitrate, evidencing that there is a performance tradeoff to be taken into account when choosing the waveform of submarine systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Demirors, E., Sklivanitis, G., Melodia, T., Batalama, S. N., & Pados, D. A. (2015). Software-defined underwater acoustic networks: Toward a high-rate real-time reconfigurable modem. IEEE Communications Magazine, 53(11), 64. https://doi.org/10.1109/MCOM.2015.7321973.

    Article  Google Scholar 

  2. 2.

    Uribe, C., & Grote, W. (2009). Model, radio communication, & for underwater WSN. In Proceeding of mobility and security 2009 3rd international conference new technologies (pp. 1–5). https://doi.org/10.1109/NTMS.2009.5384789.

  3. 3.

    Akyildiz, I. F., Wang, P., & Sun, Z. (2015). Realizing underwater communication through magnetic induction. IEEE Communications Magazine, 53(11), 42. https://doi.org/10.1109/MCOM.2015.7321970.

    Article  Google Scholar 

  4. 4.

    Rappaport, T. (2001). Wireless Communications: Principles and Practice, Wireless Communications: Principles and Practice (2nd ed.). Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  5. 5.

    Kilfoyle, D. B., Preisig, J., & Stojanovic, M. (2000). Guest editorial special issue on underwater acoustic communications. IEEE Transactions on Oceanic Engineering, 25, 2–3.

    Article  Google Scholar 

  6. 6.

    Sampath, H., Talwar, S., Tellado, J., Erceg, V., & Paulraj, A. (2002). A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trial results. IEEE Communications Magazine, 40(9), 143.

    Article  Google Scholar 

  7. 7.

    Hammoodi, A., Audah, L., & Taher, M. A. (2019). Green coexistence for 5G waveform candidates: A review. IEEE Access, 7, 10103–10126.

    Article  Google Scholar 

  8. 8.

    Gaspar, I. S. (2016). Waveform advancements and synchronization techniques for generalized frequency division multiplexing. Master’s thesis, Technische Universität Dresden.

  9. 9.

    Michailow, N., Matthé, M., Gaspar, I. S., Caldevilla, A. N., Mendes, L. L., Festag, A., et al. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045. https://doi.org/10.1109/TCOMM.2014.2345566.

    Article  Google Scholar 

  10. 10.

    Wolff, L. M., Badri-Hoeher, S., & Noack, S. (2017). Bitwise ranging through underwater acoustic communication with frequency hopped FSK utilizing the Goertzel algorithm. In IEEE OCEANS 2017-Aberdeen.

  11. 11.

    Dong, J. G., Sun, D. J., Zhang, Y. W., & Fan, W. W. (2014). FH-FSK underwater acoustic control and communication system based on LDPC code. https://doi.org/10.4028/www.scientific.net/AMM.511-512.375.

  12. 12.

    Fan, W. W., Liu, L., Zhang, Y. W., Dong, J. G., & Sun, D. J. (2014). An MMSE approach to channel shorting for underwater acoustic FH-FSK communication, sensors. Mechatronics and Automation,. https://doi.org/10.4028/www.scientific.net/AMM.511-512.334.

    Article  Google Scholar 

  13. 13.

    Liu, L. (2020). Iterative multi-channel FH-MFSK reception in mobile shallow underwater acoustic channels. IET Communications, 14(5), 838.

    Article  Google Scholar 

  14. 14.

    Hu, X., Wang, D., Lin, Y., Su, W., Xie, Y., & Liu, L. (2016). Multi-channel time frequency shift keying in underwater acoustic communication. Applied Acoustics, 103(PA), 54. https://doi.org/10.1016/j.apacoust.2015.10.009.

    Article  Google Scholar 

  15. 15.

    Walree, P. A. V., Buen, H., & Otnes, R. (2014). A performance comparison between DSSS, M-FSK, and frequency-division multiplexing in underwater acoustic channels, 2014 underwater communications and networking (UComms) (pp. 1–5).

  16. 16.

    Qiao, G., Song, Q., Ma, L., Sun, Z., & Zhang, J. (2020). Channel prediction based temporal multiple sparse bayesian learning for channel estimation in fast time-varying underwater acoustic OFDM communications. Signal Processing, 175, 107668. https://doi.org/10.1016/j.sigpro.2020.107668.

    Article  Google Scholar 

  17. 17.

    Wan, L., Jia, H., Zhou, F., Muzzammil, M., Li, T., & Huang, Y. (2020). Fine Doppler scale estimations for an underwater acoustic CP-OFDM system. Signal Processing, 170, 107439. https://doi.org/10.1016/j.sigpro.2019.107439.

    Article  Google Scholar 

  18. 18.

    Qarabaqi, P., & Stojanovic, M. (2013). OFDM for underwater acoustic communications. IEEE Journal of Oceanic Engineering,. https://doi.org/10.1109/JOE.2013.2278787.

    Article  Google Scholar 

  19. 19.

    Zhang, Y., Venkatesan, R., Li, C., & Dobre, O. A. (2015). Compressed sensing-based time-varying channel estimation in UWA-OFDM networks. In 2015 international wireless communications and mobile computing conference (IWCMC) (pp. 1520–1525). https://doi.org/10.1109/IWCMC.2015.7289308.

  20. 20.

    Li, C., Song, K., & Yang, L. (2017). Low computational complexity design over sparse channel estimator in underwater acoustic OFDM communication system. IET Communications, 11(7), 1143. https://doi.org/10.1049/iet-com.2016.1215.

    Article  Google Scholar 

  21. 21.

    Beygi, S., & Mitra, U. (2015). Multi-scale multi-lag channel estimation using low rank approximation for OFDM. IEEE Transactions on Signal Processing, 63(18), 4744. https://doi.org/10.1109/TSP.2015.2449266.

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Ahmed, S. (2015). Estimation and compensation of Doppler scale in UAC OFDM systems. In OCEANS 2015—MTS/IEEE Washington (pp. 1–12). https://doi.org/10.23919/OCEANS.2015.7401813.

  23. 23.

    Ramadan, K., Dessouky, M. I., Elagooz, S., et al. (2018). Equalization and carrier frequency offset compensation for underwater acoustic OFDM systems. Ann. Data. Sci., 5, 259–272.

    Article  Google Scholar 

  24. 24.

    Wang, Y., Zeng, Z., Li, Y., Zhang, J., & Jin, S. (2014). Multicarrier spread spectrum communication scheme for cruising sensor network in confined underwater space. IJDSN, 10, 1. https://doi.org/10.1155/2014/165749.

    Article  Google Scholar 

  25. 25.

    Bocus, M. J., Doufexi, A., & Agrafiotis, D. (2017). Performance evaluation of MIMO-OFDM/OQAM in time-varying underwater acoustic channels. In OCEANS 2017—Anchorage (pp. 1–6).

  26. 26.

    Agrafiotis, D. (2020). Performance of OFDM-based massive MIMO OTFS systems for underwater acoustic communication. IET Communications, 14(4), 588.

    Article  Google Scholar 

  27. 27.

    Wang, J., Zhang, X., & Zhu, Q. (2015). Statistical QoS-driven power adaptation over MIMO-GFDM based underwater wireless networks. In 10th ACM international conference on underwater networks and systems, WUWNet 2015 (1). https://doi.org/10.1145/2831296.2831340.

  28. 28.

    Hilario-Tacuri, A. (2019). A closed-form spectral analysis of GFDM in underwater communication systems. In Proceedings—2019 IEEE Latin-American conference on communications, LATINCOM 2019. https://doi.org/10.1109/LATINCOM48065.2019.8937919.

  29. 29.

    Hebbar, R. P., & Poddar, P. G. (2020). Generalized frequency division multiplexing for acoustic communication in underwater systems. International Journal of Communication Systems, 33(10), 86. https://doi.org/10.1002/dac.4292.

    Article  Google Scholar 

  30. 30.

    Zhong, Z., & Guo, J. (2016). Bit error rate analysis of a MIMO-generalized frequency division multiplexing scheme for 5th generation cellular systems. In Proceedings IEEE international conference electronic information and communication technology (ICEICT) (pp. 62–68). https://doi.org/10.1109/ICEICT.2016.7879653.

  31. 31.

    Akai, Y., Enjoji, Y., Sanada, Y., Kimura, R., & Sawai, R. (2016). GFDM with different subcarrier bandwidths. In Proceeding of IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1–5). https://doi.org/10.1109/VTCFall.2016.7881030.

  32. 32.

    Ozturk, E., Basar, E., & Cirpan, H. A. (2016). Generalized frequency division multiplexing with index modulation. In Proceedings of IEEE Globecom workshops (GC Wkshps) (pp. 1–6). https://doi.org/10.1109/GLOCOMW.2016.7848916.

  33. 33.

    Öztürk, E., Basar, E., & Çirpan, H. A. (2017). Generalized frequency division multiplexing with flexible index modulation. IEEE Access, 5, 24727. https://doi.org/10.1109/ACCESS.2017.2768401.

    Article  Google Scholar 

  34. 34.

    Wei, P., Xia, X. G., Xiao, Y., & Li, S. (2016) Low-complexity DGT-based GFDM receivers in broadband channels. In Proceedings of IEEE international conference communication systems (ICCS) (pp. 1–6). https://doi.org/10.1109/ICCS.2016.7833550.

  35. 35.

    Dias, J. T., & de Lamare, R. C. (2017). Unique-word GFDM transmission systems. IEEE Wireless Communications Letters, 6(6), 746. https://doi.org/10.1109/LWC.2017.2738641.

    Article  Google Scholar 

  36. 36.

    Huang, J., Wang, H., He, C., Zhang, Q., & Jing, L. (2018). Underwater acoustic communication and the general performance evaluation criteria. Frontiers of Information Technology & Electronic Engineering, 19(8), 951. https://doi.org/10.1631/FITEE.1700775.

    Article  Google Scholar 

  37. 37.

    Roul, S., Kumar, C., & Das, A. (2019). Ambient noise estimation in territorial waters using AIS data. Applied Acoustics, 148, 375. https://doi.org/10.1016/j.apacoust.2018.07.036.

    Article  Google Scholar 

  38. 38.

    Suganthbalaji, R., Elizabeth Shani, N. X., Nair, N. R., & Nair, P. V. (2019). Effect of environment on underwater acoustic communication data rates. Defence Science Journal, 69(2), 163. https://doi.org/10.14429/dsj.69.14227.

    Article  Google Scholar 

  39. 39.

    Wang, X., Wang, X., Jiang, R., Wang, W., Chen, Q., & Wang, X. (2019). Channel modelling and estimation for shallow underwater acoustic OFDM communication via simulation platform. Applied Sciences, 9(3), 1. https://doi.org/10.3390/app9030447.

    Article  Google Scholar 

  40. 40.

    de Luna, D. R., Dantas, I. A. N., Sousa, L. C., & de Sousa Jr., V. A. (2017). OFDM over underwater acoustic channel with large and small scale fading. In The international conference on computational science and computational intelligence (CSCI-ISMC).

  41. 41.

    Andrade, I., & Campos, M. (2017). Performance evaluation of multicarrier systems applied to underwater acoustic communications. In XXXV Simpósio Brasileiro de Telecomunicações e Processamento de Sinais.

  42. 42.

    Zhou, S., & Wang, Z. (2014). OFDM for underwater acoustic communications (1st ed.). Hoboken: Wiley Publishing.

    Google Scholar 

  43. 43.

    Porter, M. (2008). General description of the bellhop ray tracing program. http://oalib.hlsresearch.com/Rays/GeneralDescription.pdf.

  44. 44.

    Vajapeyam, M., Mitra, U., Preisig, J., & Stojanovic, M. (2007). Distributed space-time cooperative schemes for underwater acoustic communications. In OCEANS 2006—Asia Pacific.

  45. 45.

    Qarabaqi, P., & Stojanovic, M. (2013). Acoustic channel simulator code. http://millitsa.coe.neu.edu/?q=research/simulator.

  46. 46.

    Maritime, K. (2018). Kongsberg maritime. https://www.kongsberg.com/.

  47. 47.

    Bocus, M. J., Doufexi, A., & Agrafiotis, D. (2016). Performance evaluation of filterbank multicarrier systems in an underwater acoustic channel. In 2016 IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC). IEEE (pp. 1–6).

Download references

Acknowledgements

The proof of concept simulations provided by this paper was supported by High Performance Computing Center at UFRN (NPAD/UFRN). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Rodrigues de Luna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Luna, D.R., de Sousa, L.C. & de Sousa, V.A. Multicarrier Systems Over Underwater Acoustic Channels: A Performance Evaluation. Wireless Pers Commun (2020). https://doi.org/10.1007/s11277-020-07934-7

Download citation

Keywords

  • Underwater communication
  • FSK
  • OFDM
  • GFDM