Nonuniform Semi-patches for Designing an Ultra Wideband PIFA Antenna by Using Genetic Algorithm Optimization

Abstract

The planar inverted-F antenna (PIFA) is widely used in mobile and portable radio devices due to its good performance. However, it is rarely used as an ultra wideband antenna due to its narrow band characteristics. In this paper, we propose a new method of designing the ultra wideband PIFA antenna by using a genetic algorithm. The radiating plate of the proposed antenna is optimized by using three different sizes of rectangular semi-patches. The genetic algorithm optimization is used to define the location and the size of the suitable semi-patches in order to achieve an ultra wideband PIFA antenna. The suggested antenna is a new ultra wideband PIFA antenna with nonuniform semi-patches for Wi-Fi/Bluetooth/LTE/WLAN/WIMAX/HIPERLAN-2/5G applications with a very large bandwidth (\(S_{11} <-6 \mathrm{dB}\)) starting from 2.3 to 6 GHz to cover the major part of the mobile phone frequencies. Three operating resonance frequencies appeared at 2.4 GHz, 3.95 GHz, and 5.13 GHz. All these three resonant frequencies show better impedance matching with convenient gain and omnidirectional radiation pattern. The proposed PIFA antenna design is printed on a substrate named FR4 epoxy and having a total dimension of 30 \(\times\) 15 \(\times\) 5.4 \(\mathrm{mm}^3\). Besides, the proposed ultra wideband PIFA antenna has a compact size and achieved a good performance, which makes it appropriate for mobile in several applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Elsadek, H., & Nashaat, D. M. (2008). Multiband and UWB V-shaped antenna configuration for wireless communications applications. IEEE Antennas and Wireless Propagation Letters, 7, 89–91.

    Article  Google Scholar 

  2. 2.

    Wakrim, L., Ibnyaich, S., & Hassani, M. M. (2017). Multiband operation and performance enhancement of the PIFA antenna by using particle swarm optimization and overlapping method. Applied Computational Intelligence and Soft Computing, 2017, 1–9.

    Article  Google Scholar 

  3. 3.

    Singh, P., & Mishra, M. (2016). Design and performance evaluation of PIFA with parasitic elements for mobile and UWB applications. i-Manager’s Journal on Communication Engineering and Systems, 5(2), 15.

    Article  Google Scholar 

  4. 4.

    Ibnyaich, S., Ghammaz, A., & Hassani, M. M. R. (2012). “Planar inverted-F antenna with J shaped slot and parasitic element for UWB application. International Journal of Microwave and Wireless Technologies, 4(6), 613–621.

    Article  Google Scholar 

  5. 5.

    See, C. H., Abdalhameed, R. A., Hraga, H. I., et al. (2011). Design of a PIFA with parasitic F element miniaturized antenna assembly for lower band ultrawideband and IEEE 802.11 a applications. Microwave and Optical Technology Letters, 539, 1970–1974.

    Article  Google Scholar 

  6. 6.

    Chattha, H. T., Huang, Y., Lu, Y., et al. (2010). An ultrawideband planar inverted F antenna. Microwave and Optical Technology Letters, 52(10), 2285–2288.

    Article  Google Scholar 

  7. 7.

    Gomezvillanueva, R., Linaresymiranda, R., Tiradomä’Ndez, J. A., et al. (2014). Very broadband PIFA antenna for mobile communications and ultrawideband services. Microwave and Optical Technology Letters, 56(2), 313–316.

    Article  Google Scholar 

  8. 8.

    Gomez-Villanueva, R., Linares-y-Miranda, R., Tirado-Mendez, J. A., et al. (2013). Ultra-wideband planar inverted-F antenna (PIFA) for mobile phone frequencies and ultra-wideband applications. Progress in Electromagnetics Research, 43, 109–120.

    Article  Google Scholar 

  9. 9.

    Zuazola, I. J. G., Batchelor, J. C., Elmirghani, J. M. H., et al. (2010). UWB PIFA for simplified transceivers. Electronics Letters, 46(2), 116–118.

    Article  Google Scholar 

  10. 10.

    Afrin, F., Yenisey, W. A., & Syed, M. A. A. A., et al. (2017). Design of a slot loaded planar inverted-F antenna for ultra-wideband applications. In 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, pp. 2620–2624.

  11. 11.

    Chung, K. L., Tam, W. Y., & Kan, H. K. (2009). A compact wideband PIFA. Microwave and Optical Technology Letters, 51(11), 2554–2556.

    Article  Google Scholar 

  12. 12.

    Man, M. Y., Yang, R., Lei, Z. Y., et al. (2012). Ultra-wideband planar inverted-F antennas with cut-etched ground plane. Electronics Letters, 48(14), 817–818.

    Article  Google Scholar 

  13. 13.

    Yun, J., & Choi, J. (2016). Low-profile planar inverted-F antenna for ultrawideband applications. Journal of Electromagnetic Engineering and Science, 16, 4.

    Google Scholar 

  14. 14.

    See, C. H., Abd-Alhameed, R. A., Zhou, D., et al. (2010). Ultra-wideband planar inverted FF antenna. Electronics Letters, 46(8), 549–550.

    Article  Google Scholar 

  15. 15.

    See, C. H., Abd-Alhameed, R. A., Zhou, D., et al. (2011). Broadband dual planar inverted F-antenna for wireless local area networks/worldwide interoperability for microwave access and lower-band ultra wideband wireless applications. IET Microwaves, Antennas & Propagation, 5(6), 644–650.

    Article  Google Scholar 

  16. 16.

    Kearney, D., John, M., & Ammann, M. J. (2010). Miniature ceramic dual-PIFA antenna to support band group 1 UWB functionality in mobile handset. IEEE Transactions on Antennas and Propagation, 59(1), 336–339.

    Article  Google Scholar 

  17. 17.

    Kearney, D., John, M., & Ammann, M. J. (2010). Miniature ceramic PIFA for UWB band groups 3 and 6. IEEE Antennas and Wireless Propagation Letters, 9, 28–31.

    Article  Google Scholar 

  18. 18.

    Wu, C.-H., & Wong, K.-L. (2009). Ultrawideband PIFA with a capacitive feed for penta-band folder-type mobile phone antenna. IEEE Transactions on Antennas and Propagation, 57(8), 2461–2464.

    Article  Google Scholar 

  19. 19.

    El Misilmani, H. M., Naous, T., & Al Khatib, S. K. (2020). A review on the design and optimization of antennas using machine learning algorithms and techniques. International Journal of RF and Microwave Computer Aided Engineering, 30, e22356.

    Article  Google Scholar 

  20. 20.

    Maged, M., El-Telbany, M., & El-Akhdar, A. (2020). Design optimization for high-gain quad array of helical antennas for satellite applications. Recent Advances in Engineering Mathematics and Physics (pp. 183–190). Cham: Springer.

    Google Scholar 

  21. 21.

    Lovestead, R. L., & Safaaijazi, A. (2020). Optimum design of helical antennas by genetic algorithm. Microwave and Optical Technology Letters, 62(1), 425–431.

    Article  Google Scholar 

  22. 22.

    Zhang, C. J., Yang, C. X., & et Tong, M. S. (2019). An improved genetic algorithm for multiband microstrip antenna design. In 2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall). IEEE. pp. 1241–1246.

  23. 23.

    Michael, K., & et Kucharski, A. A. (2007). Optimization of multiple-short PIFA for broadband communication. In EUROCON 2007-The International Conference on“ Computer as a Tool”. IEEE. pp. 61-64.

  24. 24.

    Nikolopoulos, C. D., & Capsalis, C. N. (2012). A small broadband switched-beam cross-PIFA for m-WiMAX applications. Journal of Electromagnetic Waves and Applications, 26(17–18), 2418–2425.

    Article  Google Scholar 

  25. 25.

    Wakrim, L., Ibnyaich, S., & Hassani, M. M. (2016). The study of the ground plane effect on a multiband PIFA antenna by using genetic algorithm and particle swarm optimization. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 15(4), 293–308.

    Article  Google Scholar 

  26. 26.

    JAYASINGHE, J. M. et UDUWAWALA, Disala. A novel multiband miniature planar inverted F antenna design for bluetooth and WLAN applications. International Journal of Antennas and Propagation, 2015, vol. 2015.

  27. 27.

    Su, D. Y., Fu, D.-M., & Yu, D. (2008). Genetic algorithms and method of moments for the design of PIFAs. Progress in Electromagnetics Research, 1, 9–18.

    Article  Google Scholar 

  28. 28.

    He, Y., Ao, J., & Tang, X., et al. (2011). The optimum design of PIFA based on HFSS and genetic algorithm. In 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing. IEEE. pp. 1–4.

  29. 29.

    Wakrim, L., Ibnyaich, S., & et Hassani, M. M. (2014). Optimization by genetic algorithm of a PIFA antenna parameters for Wifi application. In 2014 International Conference on Multimedia Computing and Systems (ICMCS). IEEE. pp. 1501–1505.

  30. 30.

    Kerkhoff, A., Rogers, R., & et Ling, H. (2001). The use of the genetic algorithm approach in the design of ultra-wideband antennas. In Proceedings RAWCON 2001. 2001 IEEE Radio and Wireless Conference (Cat. No. 01EX514). IEEE. pp. 93–96.

  31. 31.

    Midya, M., Chatterjee, A., & Mitra, M. (2020). A printed CPW-fed ultra-wideband planar inverted-F antenna. International Journal, 15, 1.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saida Ibnyaich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibnyaich, S., Wakrim, L. & Hassani, M.M. Nonuniform Semi-patches for Designing an Ultra Wideband PIFA Antenna by Using Genetic Algorithm Optimization. Wireless Pers Commun (2020). https://doi.org/10.1007/s11277-020-07905-y

Download citation

Keywords

  • PIFA antenna
  • Ultra wideband antenna
  • Genetic algorithm
  • Semi-patch
  • Wideband
  • Nonuniform