Skip to main content
Log in

An Efficient Implementation and Analysis of Tail-Biting Convolution Coding Algorithm for OFDM Based System in Terms of Speed, Memory and Peak-to-Average Power Ratio Using DSP

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Fourth Generation (4G) mobile communication system uses Orthogonal Frequency Division Multiplexing (OFDM). With this technique, high data rate demands are achieved. Tail biting Convolution Coding (TBCC) avoids the data rate loss, hence it is widely used error control coding algorithm in OFDM and other various wireless communication technologies. But, OFDM has increased Peak to Average Power Ratio (PAPR). High PAPR signal consumes more power and makes system power inefficient. To gain supercomputing performance in terms of Speed, Memory and Power on mobile devices, an efficient implementation of algorithms on Digital Signal Processing (DSP) processor is an essential requirement. This requirement becomes more stringent for Fifth Generation (5G) mobile devices. For this, wide scope of knowledge as well as skills are required to understand the algorithm, DSP architecture, instruction set, optimization and performance measurement. In this article, we have implemented TBCC algorithm using Bit by Bit (BYB) and Look Up Table (LUT) approaches on Freescale StarCore SC140 based DSP platform and proposed an efficient algorithm implementation methodology by comparing the machine cycles and memory requirement. We have used coding rate (R) = 1/2, 1/3, 1/4 and constraint length (K) = 5 and K = 9 for implementation of TBCC. Using our proposed LUT approach, we have achieved average 45.82% Computational Complexity Reduction Ratio (CCRR) in machine cycles compared to BYB approach. Proposed LUT approach increases the TBCC execution speed. Our developed fixed point routines can be used for any K ≤ 9. TBCC is also analyzed for PAPR to get an overall profiling results and three dimensional optimization of TBCC algorithm in terms of Speed, Memory and Power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Woh, M., et al. (2007). The next generation challenge for software defined radio. In S. Vassiliadis, M. Bereković, & T. D. Hämäläinen (Eds.), Embedded computer systems: Architectures, modeling, and simulation (SAMOS 2007). Lecture Notes in Computer Science (LNCS) (Vol. 4599, pp. 343–354). Berlin: Springer. https://doi.org/10.1007/978-3-540-73625-7_36.

    Chapter  Google Scholar 

  2. Lee, H., et al. (2005). Software defined radio—A high performance embedded challenge. In T. Conte, N. Navarro, W. W. Hwu, M. Valero, & T. Ungerer (Eds.), High Performance Embedded Architectures and Compilers (HiPEAC 2005). Lecture Notes in Computer Science (Vol. 3793, pp. 6–26). Berlin: Springer. https://doi.org/10.1007/11587514_3.

    Chapter  Google Scholar 

  3. ETSI TS 136 212. (2018). LTE, Evolved Universal Terrestrial Radio Access (E-UTRA)-Multiplexing and Channel Coding. 3GPP TS 36.212. Version 15.2.1, Release 15. Resource document. https://www.etsi.org/deliver/etsi_ts/136200_136299/136212/15.02.01_60/ts_136212v150201p.pdf.

  4. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology. IEEE Wireless Communications, 17(3), 10–22. https://doi.org/10.1109/MWC.2010.5490974.

    Article  Google Scholar 

  5. Jiang, M., & Hanzo, L. (2007). Multiuser MIMO-OFDM for next-generation wireless systems. Proceedings of the IEEE, 95(7), 1430–1469. https://doi.org/10.1109/JPROC.2007.898869.

    Article  Google Scholar 

  6. Singh, S., Adrat, M., & Ulbricht, G. (2017). Special issue on increasing flexibility in wireless software defined radio systems. Journal of Signal Processing Systems, 89, 81–83. https://doi.org/10.1007/s11265-017-1263-5.

    Article  Google Scholar 

  7. Han, S. H., & Lee, J. H. (2005). An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wireless Communications, 12(2), 56–65. https://doi.org/10.1109/MWC.2005.1421929.

    Article  Google Scholar 

  8. Jiang, T., & Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268. https://doi.org/10.1109/TBC.2008.915770.

    Article  Google Scholar 

  9. Frontana, E., & Fair, I. (2007). Avoiding PAPR degradation in convolutional coded signals. In IEEE Pacific Rim conference on communications, computers and signal processing, Victoria, BC (pp. 312–315). https://doi.org/10.1109/PACRIM.2007.4313237.

  10. Wilkinson, T. A., & Jones, A. E. (1995). Minimisation of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding. In 1995 IEEE 45th vehicular technology conference, countdown to the wireless twenty-first century, Chicago, IL, USA (Vol. 2, pp. 825–829). https://doi.org/10.1109/VETEC.1995.504983.

  11. Yang, K., & Chang, S. (2003). Peak-to-Average power control in OFDM using standard Arrays of linear block codes. IEEE Communications Letters, 7(4), 174–176. https://doi.org/10.1109/LCOMM.2003.811204.

    Article  Google Scholar 

  12. Jie, Y., Lei, C., Quan, L., & De, C. (2007). A modified selected mapping technique to reduce the peak-to-average power ratio of OFDM signal. IEEE Transactions on Consumer Electronics, 53(3), 846–851. https://doi.org/10.1109/TCE.2007.4341555.

    Article  Google Scholar 

  13. Chen, H., & Liang, H. (2007). A modified selective mapping with PAPR reduction and error correction in OFDM systems. In 2007 IEEE wireless communications and networking conference, Kowloon (pp. 1329–1333). https://doi.org/10.1109/WCNC.2007.251.

  14. Wang, C.-L., & Ku, S.-J. (2009). Novel conversion matrices for simplifying the IFFT computation of an SLM-based PAPR reduction scheme for OFDM systems. IEEE Transactions on Communications, 57(7), 1903–1907. https://doi.org/10.1109/TCOMM.2009.07.070156.

    Article  Google Scholar 

  15. Han, S. H., & Lee, J. H. (2004). PAPR reduction of OFDM signals using reduced complexity PTS technique. IEEE Signal Processing Letters, 11(11), 887–890. https://doi.org/10.1109/LSP.2004.833490.

    Article  Google Scholar 

  16. Merah, H., Mesri, M., & Talbi, L. (2019). Complexity reduction of PTS technique to reduce PAPR of OFDM signal used in a wireless communication system. IET Communications, 13(7), 939–946.

    Article  Google Scholar 

  17. Jayalath, A. D. S., & Tellambura, C. (2000). The use of interleaving to reduce the peak-to-average power ratio of an OFDM signal. In IEEE global telecommunications conference (Globecom’00), conference record (Cat. No. 00CH37137), San Francisco, CA, (Vol. 1, pp. 82–86). https://doi.org/10.1109/GLOCOM.2000.891696.

  18. Ma, H., & Wolf, J. (1986). On tail biting convolution codes. IEEE Transactions on Communications, 34(2), 104–111. https://doi.org/10.1109/tcom.1986.1096498.

    Article  MATH  Google Scholar 

  19. ETSI TS 101 376-5-3. (2012). GEO mobile radio interface specifications. Third Generation Packet Radio Service, Part 5: Radio Interface Physical layer specifications, Sub Part 3: Channel Coding. GMR-1 3G 45.003, Release 3. Resource document. https://www.etsi.org/deliver/etsi_ts/101300_101399/1013760503/03.03.01_60/ts_1013760503v030301p.pdf.

  20. ETSI TS 136 212. (2011). LTE-Evolved Universal Terrestrial Radio Access (E-UTRA)-Multiplexing and Channel Coding. 3GPP TS 36.212. Version 10.0.0, Release 10. Resource document. https://www.etsi.org/deliver/etsi_ts/136200_136299/136212/10.00.00_60/ts_136212v100000p.pdf.

  21. Wang, Y.-P. E., & Ramesh, R. (1996). To bite or not to bite—a study of tail bits versus tail-biting. In Proceedings of PIMRC 96-7th international symposium on personal, indoor, and mobile communications, Taipei, Taiwan, (Vol. 2, pp. 317–321). https://doi.org/10.1109/PIMRC.1996.567407.

  22. Sandoval, F., Poitau, G., & Gagnon, F. (2019). Optimizing the forward error correction codes for COFDM with reduced PAPR. IEEE Transactions on Communications, 67(7), 4605–4619. https://doi.org/10.1109/TCOMM.2019.2910811.

    Article  Google Scholar 

  23. Haykin, S. (2008). Communication systems (4th ed.). New York: Wiley.

    Google Scholar 

  24. Forney, G. (1970). Convolutional codes I: Algebraic structure. IEEE Transactions on Information Theory, 16(6), 720–738. https://doi.org/10.1109/TIT.1970.1054541.

    Article  MathSciNet  MATH  Google Scholar 

  25. Viterbi, A. (1971). Convolutional codes and their performance in communication systems. IEEE Transactions on Communication Technology, 19(5), 751–772. https://doi.org/10.1109/TCOM.1971.1090700.

    Article  MathSciNet  Google Scholar 

  26. NXP Semiconductor. (2005). Freescale Star Core SC140 DSP core reference manual. Resource document. https://www.nxp.com/docs/en/reference-manual/MNSC140CORE.pdf.

  27. Bernier, S., Lévesque, F., Phisel, M., et al. (2017). Using OpenCL to increase SCA application portability. Journal of Signal Processing Systems, 89, 107–117. https://doi.org/10.1007/s11265-017-1225-y.

    Article  Google Scholar 

  28. Prasad, S., & Jayabalan, R. (2020). PAPR reduction in OFDM systems using modified SLM with different phase sequences. Wireless Personal Communication, 110, 913–929. https://doi.org/10.1007/s11277-019-06763-7.

    Article  Google Scholar 

  29. Abdelhakim, M., Nafie, M., Shalash, A., et al. (2013). Adaptive bit loading and puncturing using long single codewords in OFDM systems. Wireless Personal Communications, 71, 1557–1576. https://doi.org/10.1007/s11277-012-0892-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol B. Kotade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotade, A.B., Nandgaonkar, A.B., Nalbalwar, S.L. et al. An Efficient Implementation and Analysis of Tail-Biting Convolution Coding Algorithm for OFDM Based System in Terms of Speed, Memory and Peak-to-Average Power Ratio Using DSP. Wireless Pers Commun 116, 559–576 (2021). https://doi.org/10.1007/s11277-020-07728-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07728-x

Keywords

Navigation